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ABSTRACT The classical problem for ascribing, on theoretical grounds, the longitudinal boundary 
condition to the Sverdrup transport is faced and solved by means of new proof.

 It is important to keep in mind that the formulation of a problem in fluid mechanics 
requires the specification of the pertinent equations and the relevant boundary conditions 
to be considered with equal care and attention.
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1. Introduction

The problem in ascribing the longitudinal boundary condition to the transport stream function 
of Sverdrup (1947) is a classic one, for historical reasons. In 1947 the Norwegian oceanographer 
Harald Ulrik Sverdrup was led to derive the relation, which now bears his name, Sverdrup balance, 
to explain the surface counter current of the Pacific Ocean at a latitude between 5° and 10° N, 
where it flows against the trade winds. To make his model, in agreement with observations, 
the author forced the zonal transport to vanish at the eastern oceanic boundary but he did not 
provide any explanation of his choice. However, in the framework of the Sverdrup balance (not 
in that of a full model) there is no way to justify the choice between the eastern or western 
boundaries where the zonal Sverdrupian transport vanishes. The balance is unable to satisfy 
the no mass-flux across both the meridional coasts and to guarantee mass conservation in the 
basin as a whole. To complete the dynamics, frictional dissipation must be introduced in the 
motion equation to bring circulation to a steady state. With the aid of this ingredient, a number 
of theoretical arguments in favour of the correct boundary condition of the Sverdrup flow have 
been produced, in particular those of Stommel (1965) and Pedlosky (1965), which are worthy of 
mention. Less convincing proofs are not cited in this paper. 

Stommel (1965) provided a semi-qualitative explanation of the asymmetry of the flow pattern 
for a subtropical gyre, based on the fact that a frictional western boundary-layer is a source of 
counter-clockwise vorticity whereas a frictional eastern boundary layer would be a source of 
clockwise vorticity. 

Pedlosky (1965) gave a fascinating and fully different approach to the same E-W asymmetry. 
He pointed out the different behaviour of long and short decaying Rossby waves while reflecting 
eastwards and westwards. As a consequence of this phenomenon, a western boundary layer 
occurs, while on the eastern region no boundary layer forms, thus allowing a Sverdrup regime 
extended to the eastern coastline. In both cases the boundary condition of the Sverdrup flow 
follows from the localisation of the return current. 
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The aim of this investigation is to infer the boundary condition of the Sverdrup transport 
stream function in the framework of the quasi-geostrophic dynamics, within the dissipative, linear 
and steady context while completely neglecting westward intensification. The quasi-geostrophic 
approach is the most natural in dealing with ocean circulation in which the horizontal length scale 
is large enough for β-plane approximation but smaller than the Earth’s radius, as in the case of 
sub-tropical and sub-polar gyres. Dissipation is requested to assure the steadiness of the motion 
on time scales, which filter out the high frequency of the eddy variability. Ultimately, linearity of 
the governing vorticity equation enables the application of the superposition principle, which is 
an indispensable prerequisite to complete the deductive process. The flow field is given by the 
superposition of that Sverdrupian with another field aimed to close the overall transport steam 
lines. The inference is mainly based on an inequality originated by the sink nature, from the 
energetic point of view, of dissipation.

2. Governing equations and basic inequalities

A flow governed by the dimensionless steady quasi-geostrophic vorticity equation in the 
dissipative regime:

(1)

in a certain β– plane is the starting assumption. In Eq. (1), ψ (x, y) is the transport stream function 
and δn/L (<<1) is the frictional boundary-layer width relative to a certain parameterisation of 
turbulence, singled out by the integer, n (≥1). The Stommel and Munk classical models are easily 
recovered for n = 1 and n = 2, respectively. Due to the smallness of δn/L, the Sverdrup balance 
emerges from Eq. (1) wherever dissipation plays a minor role. In such case, the meridional 
transport, ∂ψ/∂x, tends to adjust in balance with the wind-stress curl, according to the Sverdrup 
equation:

(2)

where curlzτ = k̂ ·  × τ. The fluid domain D is given by:

(3)

where xW and xE may depend on latitude. Latitudes y = 0 and y = 1 are, by definition, two 
consecutive zeros of curlzτ while the sign of the latter establishes whether the gyre is sub-tropical 
(curlzτ ≤ 0) or sub-polar (curlzτ ≥ 0). In both cases, the signs of curlzτ, and hence of ∂ψSv/∂x, 
are constant throughout the gyre. The impermeability of the coastlines yields the kinematic 
boundary condition:

.                            (4)
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Following these premises, the product of Eq. (1) multiplied by ψ and the subsequent 
integration on the domain (3) should be considered, with the aid of the Green theorem:

.               (5)

Due to the boundary condition (4), the first term on the left of Eq. (5) is zero. Moreover, in 
general:

.                         (6)

Suitable additional boundary conditions are understood to carry out the integration appearing 
in inequality (6). The linearity of Eq. (1) enables the introduction of the quantity:

(7)

to meet the following requirements.
• No mass-flux across both the longitudinal boundaries, that is

(8)

and

.                          (9)

Only in one of Eqs. (8) and (9), φ ≠ 0; but in with of them is just the main question of the 
investigation.

• Mass conservation in the basin as a whole, that is:

(10)

at every latitude.
The term φ (x, y) can be evaluated by means of standard boundary-layer techniques, however, 

only if the boundary condition of the Sverdrup stream function is known. The only question for 
which of the two boundary conditions, between ψSv (xW, y) = 0 and ψSv (xE, y) = 0, is that true? 

To solve the problem, inequality: 

(11)
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deriving from Eq. (5) and inequality Eq. (6) are taken into account. It is generated by the sink 
nature of dissipation, as anticipated in the introduction. Substitution of Eq. (7) into inequality 
(11) provides an inequality of the kind:

(12)

where

 .                     (13)

Given that inequality (12) depends on ψSv (xE, y) and ψSv (xW, y), the same inequality can be 
symbolically written as:

.               (14)

Then, in the next section, it is shown that:

(15)

while

.                     (16)

The conclusion is that inequality (15) satisfies inequality (12) and yields the boundary 
condition:

.                                (17)

Conversely, inequality (16) contradicts inequality (12) and, therefore, the boundary condition 
ψSv (xW, y) = 0 is ruled out.

3. Proof of Eq. (17)

Integration of the quantities ISv and Iφ appearing in Eq. (13) is explicitly carried out here. The 
first of them is immediate, that is:

.                        (18)
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An integration by parts of the second integral provides:

(19)

i.e.:

.            (20)

Recalling boundary conditions in Eqs. (8) and (9), Eq. (20) becomes:

.                  (21)

The meridional return flow, , appearing in Eqs. (19) to (21), closes the circulation forced by 
the Sverdrup balance. It is opposite to the Sverdrup flow [Eq. (2)] and has a constant sign. Thus, 
according to the generalised mean value theorem:

.                     (22)

where xW < x� < xE. Moreover, owing to Eq. (10):

.             (23) 

The substitution of Eq. (23) into Eq. (21) results in the equation:

.

         (24)

According to the Lagrange theorem:

(25)

(26)
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where xE – x� > 0, x� – xW > 0 and (ξ, y), (λ, y) are suitable points of the domain (3). Substitution of 
Eqs. (25) and (26) into Eq. (24) yields:

.           (27)

On the whole, from Eqs. (18) and (27), the following inequality is obtained:

 (28)

The latter is the explicit form of Eq. (14).
The alternative

a) ψSv (xE, y) = 0
b) ψSv (xW, y) = 0 
under the hypotheses of a sub-tropical gyre and of a sub-polar gyre is, at this stage, taken into 
consideration.

• In case a), a sub-tropical gyre implies ∂ψSv/∂x < 0 and ψSv (xW, y) > 0, while a sub-polar gyre 
implies ∂ψSv/∂x > 0 and ψSv (xW, y) < 0. Thus, in both cases the product ψSv (xW, y) curlzτ (x, y) < 0. 
Therefore, inequality (28) becomes

(29)

 i.e.:

(30)

 in accordance with inequality (15).
• In case b), a sub-tropical gyre implies ∂ψSv/∂x < 0 and ψSv (xE, y) < 0, while a sub-polar gyre 

implies ∂ψSv/∂x > 0 and ψSv (xE, y) > 0. Thus, in both cases the product ψSv (xE, y) curlzτ (x, y) > 0. 
Therefore, inequality (28) becomes:

(31)

 i.e.:

(32)

 in agreement with inequality (16), but in disagreement with inequality (12).
The conclusion is that only boundary condition a) satisfies inequality (28) and, therefore, the 

correct boundary condition to be applied to the Sverdrup balance is given by Eq. (17).

τ ξ

τ
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3.1. Remark 1 

Eq. (11) provides the opportunity to return to counter-currents, which were the inspiring 
argument for the formulation of the Sverdrup balance. The left side of inequality (11) can be 
developed as follows:

.           (33)

By using the Stoke theorem and the geostrophic current,  the term on the right of 
Eq. (33) becomes, with the aid of identity 

.                     (34)

In Eq. (34), t̂  is the unit vector tangent along ∂D and k̂  is the unit vector normal to the 
β-plane. Owing to the boundary condition of Eq. (4), the first term on the left of Eq. (34) is zero, 
whence inequality (11) and Eq. (34) imply: 

.                                (35)

Inequality (35) shows that a counter-current, uc, which is characterised by τ · uc < 0, is a statistically 
minority element, which does not invalidate inequality (35) itself, in the sense that the

average  also includes uc, if any. This conclusion does not depend on

the linearity of the vorticity equation: in fact, the non-linear acceleration term [absent in Eq. (1)] 
multiplied by the stream function and integrated on the fluid domain is exactly zero so inequality 
(35) is preserved in any case. Indeed, phenomenology exhibits counter-currents embedded in 
current fields whose characteristics reveal non-linear dynamics.

3.2. Remark 2

Crisciani and Purini (1997) considered the same problem as the one analysed in this 
investigation to obtain the boundary condition of Eq. (17). They used inequality (18) as well, but 
dealt more hastily with inequality (19), based only on scaling arguments. Thus, the derivation 
expounded in this study should be much more accurate and convincing.

4. Conclusions

Not surprisingly, the result of this investigation derives from the embedding of the Sverdrup 
balance into a vorticity equation with dissipation. The peculiarity of the inference lies in the 
development of inequality (11) determined only by the dissipation sink effect but without any 
hypothesis on the position of the frictional boundary layer. The system examined is largely 
idealised, however, the possible inclusion of further details (for instance bottom topography 
and coastline modulation) is expected not to modify the result but, rather, make it less evident.
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