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ABSTRACT This study presents a methodology to model the acoustic properties of a siliciclastic rock 
partially saturated with hydrogen (H2), carbon dioxide (CO2) and methane (CH4). The 
gas properties are obtained with the Peng-Robinson equation of state, and pressure-
temperature conditions, based on linear basin modelling with a constant geothermal 
gradient, are taken into consideration. The dry-rock bulk and shear moduli are obtained 
with the Krief model, while the Athy equation is used to calculate porosity as a function of 
depth. Mesoscopic attenuation and velocity dispersion due to fluid effects are quantified 
using the Johnson model. The viscoelastic Cole-Cole model is used to describe the 
velocities and attenuation predicted by the Johnson model when synthetic seismograms, 
with an equivalent viscoelastic rheology, are to be calculated. In this case, the P-wave 
velocity is calculated as a function of gas saturation using the Gassmann equation and an 
effective fluid modulus based on the Brie equation. This method can be used for feasibility 
studies on the geological storage of H2 and CO2 in aquifers and depleted CH4 fields.

Key words: H2, acoustics, geological storage, seismic monitoring.

© 2024 - The Author(s)

1. Introduction

Hydrogen (H2) is currently gaining importance as a future low-carbon energy carrier. The role 
that H2 can play as a clean energy solution for the decarbonisation of transport, electricity, heating, 
and fuel-intensive industries to reduce greenhouse gas emissions on a large scale is increasingly 
recognised (Miocic et al., 2022). The use of green H2 has seen unprecedented economic and 
political momentum, and the large volumes required to meet future demands would require new 
storage facilities. To advance new H2 technologies, accurate information on acoustic properties 
is important if underground storage and monitoring is to be implemented. Depleted reservoirs 
and saline aquifers have the potential to provide the required storage volume (e.g. Carcione et 
al., 2020). The possibility of storing H2 in such reservoirs and, then, withdrawing it repeatedly to 
cover fluctuations in energy demand, is currently being investigated (e.g. Barison et al., 2023; 
Mattera et al., 2023). Gas disposal should take place at supercritical pressures in order to avoid 
the presence of the gas phase and to make the best possible use of the storage volume.

The effects of pore pressure on the frame of the host rock and the contrast between the 
acoustic properties of the brine and those of H2 are the most important factors for detecting 
and monitoring the presence of H2 (e.g. Carcione et al., 2023). The variations may indicate that 
seismic methods can be used to detect and monitor the presence and flow of H2 in the subsurface. 
Initially, the fluid properties are defined as a function of pressure and temperature, where the 
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acoustic gas properties are obtained from the van der Waals (VDW) and Peng-Robinson (PR) 
equations of state (EoSs). The possibility that H2 may dissolve in the brine is not considered, as 
the solubility of this gas is negligible (Chabab et al., 2020) [0.0012 g of gas per kilogram of water 
at 60 °C and 0.1 MPa, compared to 0.5 for carbon dioxide (CO2)]. Carcione et al. (2006) show 
that the amount of dissolved CO2 is very small (see their Fig. 5), and the same is expected for H2, 
mainly because of its low solubility.

The dry-rock moduli are obtained with the Krief model and the effects of pore pressure 
changes are considered through the porosity calculated with the Athy equation. The wet-rock 
moduli and seismic velocity are obtained using the Gassmann equation and the Johnson model, 
which also provides the attenuation factor.

Viscosity is essential for the quantification of seismic attenuation in the Johnson model. The 
viscosities of H2, CO2, and methane (CH4) are determined as a function of pressure and temperature 
from the Lohrenz-Bray-Clark (LBC) theory (Lohrenz et al., 1964). Brine bulk modulus, density, and 
viscosity are calculated using empirical formulae proposed by Batzle and Wang (1992).

Seismic numerical modelling is often based on dynamic equations of wave propagation solved 
in the time domain, with viscoelasticity to model wave attenuation based on Cole-Cole or Zener 
mechanical elements (e.g. Carcione et al., 2006; Picotti and Carcione, 2017). In acoustic wave 
simulations, the rock bulk modulus is determined by considering the Brie equation for the fluid 
mixture; instead, viscoelasticity can be implemented by fitting the Johnson attenuation factors 
with the Cole-Cole model.

2. Acoustic properties of the fluids

The properties of the fluids involved in the sequestration process (H2, CO2, CH4, and brine) 
depend on the temperature and pressure, which, in turn, depend on the depth, z. A simple – 
reference – situation is to consider a constant geothermal gradient, G, so that the temperature 
variation with depth is:

,                                (1)

where T0 is the surface temperature (typical values for G are between 20 and 30 °C/km). The 
pore pressure, p, at depth z depends on many factors, most of which are geological in nature, 
e.g. regions of low permeability, sealing faults and hydrocarbon caps that prevent pressure 
equalisation (communication) from the reservoir to the surface. The simplest case is that the 
pore pressure is hydrostatic and given by:

,                               (2)

where p0 is the atmospheric pressure, ρ-b is the average brine density from the surface to depth z, 
and g is the acceleration due to gravity. In addition, the confining pressure can be expressed as:

,                               (3)

where ρ- is the average density of the sediments.
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2.1. The properties of H2, CO2 and CH4

The thermodynamic properties of real gases can be computed with an EoS. The first cubic 
EoS was proposed by van der Waals (1873) and is given by:

,                               (4)

where p is the gas pressure, V is the molar volume, R = 8.31 J/(mol K) is the gas constant, and 
a and b are the attractive and repulsive terms, respectively, which depend on the chemical 
compound in question. These coefficients can be calculated as follow (e.g. Poling et al., 2001):

(5)

and

,                                 (6)

where Ω
a = 0.4218 and Ωb = 0.125, and Tcr and pcr are the critical temperature and pressure, 

respectively. The critical properties of CO2, CH4 and H2 are listed in Table 1.

Table 1 - Critical properties, molar mass and acentric factor of CO2, CH4 and H2 (from Poling et al., 2001).

 Substance Tcr (K) pcr (MPa) Vcr (cm3/mol) M (g/mol) ω
_

 CO2 304.12 7.37 94.07 44.010 0.225

 CH4 190.56 4.56 98.60 16.043 0.011

 H2 33.25 1.30 65.00 2.016 -0.2202

Several EoSs have been published after van der Waals. The PR EoS is a modification of the 
VDW EoS and is widely used in industrial applications of natural gas. It is given by (Peng and 
Robinson, 1976):

,                             (7)

where the terms a and b are given by Eqs. (5) and (6) with Ωa = 0.45724 and Ωb = 0.07780. The 
temperature dependency of a is provided by the α-function:

,                          (8)

where Tr = Tc / Tcr is the reduced temperature and
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(9)

where ω
_ is the acentric factor. The acentric factors of CO2, CH4, and H2 are given in Table 1.

A common strategy to improve the accuracy of PR EoS predictions is to change the α-function 
specifically for each chemical compound. For CO2 Hekayati et al. (2016) propose the following 
α-function:

(10)

where pr = p / pcr is the reduced pressure. Saffari and Zahedi (2013) developed a new α-function 
optimised for natural gas components which, for CH4 is given by

(11)

The same parameters are assumed for both CH4 and H2.
In the following, we refer to Eq. (7) as the classical Peng-Robinson (CPR) equation with 

the α-function given by Eq. (8) and the same Eq. (7) as the modified Peng-Robinson (MPR) 
equation with the α-function given by Eqs. (10) or (11), depending on the type of gas taken into 
consideration.

The mass density of gases is given by

,                                  (12)

where M is the molar mass and V is the molar volume obtained at given pressure and temperature 
conditions by solving Eqs. (4) or (7). The molar mass of the gases considered in this study are 
listed in Table 1. If the gas pressure is assumed to be equal to the expected formation pressure, 
then ρg can be related to depth with Eq. (2).

Isothermal gas compressibility CT depends on the pressure. It can be calculated as follows 
(Morse and Ingard, 1986):

(13)

For sound waves below approximately 1 GHz a better approximation is to assume that the 
compression is adiabatic, i.e. that the entropy content of the gas remains almost constant during 
compression (Morse and Ingard, 1986). Adiabatic compressibility CS is related to isothermal 
compressibility CT by CS = CT / γ, where γ is the specific heat ratio.

Considering the VDW EoS [Eq. (4)] and Eq. (12), the gas bulk modulus can be obtained from:

(14)

,
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The specific heat ratio depends on both pressure and temperature (e.g. Schappert and 
Pelster, 2018), however, γ ≈ 7/5 for H2 and γ ≈ 4/3 for CH4 are considered, i.e. the ideal-gas 
approximations of diatomic and non-linear polyatomic gases, respectively. For CO2, γ =1.3 is 
considered (Shearwood and Sloan, 2023).

Considering Eqs. (7) and (12), the gas bulk modulus can be expressed as:

(15)

For this EoS, γ (p, T) is obtained by fitting γ values resulting from velocity data regression. 
Isothermal series of velocity values from the National Institute of Standards and Technology 
(NIST) Chemistry WebBook (Linstrom and Mallard, 2001) and densities from the MPR EoS are used 
to calculate bulk modulus values, which are used as calibration points. Next, the corresponding 
γ values are calculated using Eq. (15). These sparse data points are, then, fitted using a neural 
network fitting algorithm (S0852306, 2023), which also enables the estimation of intermediate γ 
values that are different from those obtained from the calibration points.

Alternative expressions for the acoustic properties of gases can be found in Batzle and Wang 
(1992), Span and Wagner (1996), and Picotti et al. (2012).

The equations providing the viscosities of the three gases as a function of pressure and 
temperature are reported in Appendix A.

2.2. The properties of brine

The properties of brine depend on the temperature, pressure, and salinity. Batzle and Wang 
(1992) provide a number of useful empirical relationships between the state variables and the 
velocity and density. For the sake of completeness, these relationships are reproduced here. The 
equations are limited to the pressures and temperatures of the experiments conducted by Batzle 
and Wang (1992) (approximately 60 MPa and 100 °C).

The density of brine, in g/cm3, is given by:

(16)

with

(17)

where S is the weight fraction (ppm/1,000,000) of sodium chloride. Ultimately, the velocity of 
sound in brine is:

(18)

where VW is the velocity of pure water given by:

,

,

,
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(19)

with constants ωij given in Table 2. The same units introduced earlier, are used here and in the 
rest of the paper. Using these relationships, we obtain the brine bulk modulus as Kb = ρb V 2b.

The viscosity of brine, in mPa s, is computed with:

(20)

where Tc is given in degrees Celsius.

Table 2 - Coefficients for brine property calculation.

 ω00 = 1402.85 ω20 = 3.437×10−3 

  ω10 = 4.871 ω12 = 1.739×10−4 

 ω20 = − 0.04783 ω22 = − 2.135×10−6 

 ω30 = 1.487×10−4  ω32 = − 1.455×10−8 

 ω40 = − 2.197×10−7  ω42 = 5.230×10−11 

 ω01 = 1.524  ω03 = − 1.197×10−5 

 ω11 = − 0.0111 ω13 = − 1.628×10−6 

 ω21 = 2.747×10−4  ω23 = 1.237×10−8 

 ω31 = − 6.503×10−7  ω33 = 1.327×10−10 

  ω41 = 7.987×10−10  ω43 = − 4.614×10−13 

2.3. The effective fluid model

The mixture of gas and brine behaves like a composite fluid with properties that depend on 
the stiffness moduli of the constituents and their respective saturations, sg and sb, where the 
indices g and b refer to gas and brine. The properties of the gas-brine mixture are determined 
using the Wood model (Wood, 1955; Mavko et al., 2009). The bulk modulus is:

,                          (21)

where sb = 1 – sg.
If the fluids in the pore volume are not mixed but distributed in patches, the effective bulk 

modulus of the fluid at high frequencies is larger than that predicted by the Wood model. The 
differential equations used to calculate synthetic seismograms should take into account the 
attenuation mechanism of wave-induced fluid flow, also called mesoscopic attenuation. However 
this approach, which is described for example by the Johnson model, is in the frequency domain. 
Since modelling in this domain is less efficient, the equations are solved in the time domain, 
using an effective fluid modulus and viscoelasticity to describe the attenuation (Carcione et al., 
2006). To obtain the bulk modulus of the gas-liquid mixture, an empirical law, introduced by Brie 
et al. (1995), is applied. The effective bulk modulus is given by:

,
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,                            (22)

where e is an empirical parameter. This equation fits the seismic and ultrasonic band data, in 
particular the values for the sonic band given by Brie et al. (1995). Eq. (22) yields the Voigt mixing 
law (Voigt, 1928) for e = 1 and an approximation to the Wood model for e = 40. To quantify 
the exponent, e, on a physical basis, in this study, the Johnson model with patchy saturation 
(Johnson, 2001; Picotti and Carcione, 2017) is used. It is assumed that the medium is provided 
with gas patches in a brine-saturated background where the brine has absorbed the maximum 
amount of gas. The Johnson model describes wave velocity and attenuation as a function of 
frequency, patch size, permeability, and viscosity. Attenuation and velocity dispersion are caused 
by fluid flow between patches with different pore pressures. The critical relaxation scale of 
fluid diffusion is proportional to the square root of the ratio of permeability to frequency. At 
seismic frequencies, the length scale is very large and the pressure is nearly uniform throughout 
the medium, but as the frequency increases, pore pressure differences can cause a significant 
increase in P-wave velocity (see Appendix B).

The density of the gas-liquid mixture is simply:

(23)

3. Seismic velocities and quality factor

The behaviour of the dry frame (or skeleton) as a function of the confining and pore pressures 
is an important property of rocks. According to the Krief model, the dry-rock moduli present the 
following general form (Krief et al., 1990):

,                    (24)

where Ks and μs are the bulk and shear moduli of the grains forming the sediment, and A and 
B are dimensionless parameters. In order to include the pressure dependence of the dry-rock 
moduli, the porosity is assumed to be given by (Athy, 1930):

,                            (25)

where φ0 is the porosity at zero differential pressure, for instance, the rock at room conditions, 
and pφ is a constant.

The rock permeability can be estimated with the Kozeny-Carman equation (Mavko et al., 
2009):

,                                 (26)

where κ0 is a constant.
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The wet-rock bulk modulus is given by the Gassmann modulus:

,                           (27)

where Kf is the bulk modulus of the fluid in the pore space, and

(28)

(e.g. Carcione, 2022). In the case of a gas-brine mixture, Kf can be either KW or KB, depending 
on the distribution of the two fluid phases in the pore space. The wet-rock shear modulus is 
simply the same as the dry-rock modulus, i.e. μ = μm. The P-wave and S-wave velocities (at low 
frequencies), therefore, are:

(29)

where ρ is the rock bulk density, given by:

,                            (30)

where ρs is the grain density. The Gassmann model provides the velocities when gas and liquid 
are mixed in the pore space; however, the use of Eq. (22) enables the extension of this model to 
patchy saturations.

P-wave attenuation and dispersion are introduced with the Johnson patchy saturation model 
(Johnson, 2001; Picotti and Carcione, 2017). The complex velocity of the P-wave, vc, is given in 
Appendix B [Eq. (B13)]. From this velocity, phase velocity vP, quality factor Q and attenuation 
factor α� can be derived as follows (e.g. Carcione, 2022):

,                              (31)

(32)

and

,                               (33)

where ω = 2πf is the angular frequency.
For time-domain numerical modelling and computation of synthetic seismograms, an 

equivalent viscoelastic medium, represented by the Cole-Cole model (Picotti and Carcione, 
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2017), is used to account for the attenuation and velocity dispersion described by the Johnson 
model. The Cole-Cole model is described in Appendix C. The Johnson model has two important 
parameters that determine the shape and mean size of the patches, namely size factor T and 
shape factor S/V (see Appendix B). The procedure requires the fitting of the Johnson quality 
factor [Eq. (32)] to the Cole-Cole quality factor:

,                                 (34)

associating K [see Eq. (B8)] with KG M̃  [see Eq. (C1)], where:

(35)

is the Cole-Cole complex velocity. In this way, the central frequency, fC, and the minimum quality 
factor of the Cole-Cole model, Q0, are obtained from QK = Re (K) / Im (K), and the corresponding 
parameters (relaxation times and the irrational exponent) are derived from these quantities, 
as shown in Picotti and Carcione (2017). If ω = 0 and M̃  = 1, then, Vp of Eq. (29) is obtained. 
Conversely, the S-wave velocity is frequency-independent, since the wave loss is exclusively due 
to dilatational deformations.

The governing differential equations in 3D space are given by Eq. (15) in Carcione et al. (2021):

(36)

where ui represents the displacement components, σ = σii/3, ε = εii, an overdot indicates temporal 
differentiation and Einstein implicit summation is assumed. When q = 1, the Zener model is 
obtained. The differential equations based on memory variables can be found in section 3.9 of 
Carcione (2022).

4. Seismic properties of gas bearing rocks

In this study, the density of gases is calculated as a function of depth using the VDW [Eq. 
(4)] and PR [Eq. (7)] EoSs, while the bulk modulus is calculated using Eqs. (14) and (15). In-
situ pressure and temperature are determined using Eqs. (1) and (2), where ρ-b = 1020 kg/m3, 
G = 30 °C/km, and T0 = 15 °C. Fig. 1a shows the gas densities calculated with different EoSs in 
comparison with reference data from the NIST Chemistry WebBook. The MPR EoS data match 
the NIST data points, while the curves calculated with VDW and CPR EoSs deviate from the 
reference data points. The velocity curves are shown in Fig. 1b, where the velocity of sound in 
gases is given by:

,

,

,
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Fig. 1 - Density (a) and 
sound velocity (b) of 
CO2, CH4 and H2 as a 
function of depth; the 
circles are data obtained 
from the NIST Chemistry 
WebBook, the dotted line 
has been computed with 
the VDW EoS whilst the 
dashed and continuous 
lines have been obtained 
with the CPR and MPR 
EoSs, respectively.

(37)

H2 has a high velocity due to its low density, and CH4 has a higher velocity than CO2 due to 
its lower density. Similarly to Fig. 1a, the MPR EoS performs better than the other equations; 
therefore, hereafter, the seismic properties of the three gases are calculated with the MPR EoS.

As described in section 2.1, the gas bulk modulus depends on the specific heat ratio. Fig. 2 
shows γ (p, Tc) of the three gases obtained with Eq. (15) by regressing velocity data from the 
NIST Chemistry WebBook and fitting it with a neural network algorithm (S0852306, 2023). Such 
algorithm enables the estimation of the value in the range of 10 - 250 °C and 0 - 50 MPa.

Fig. 3 shows the H2, CO2 and CH4 viscosity values, calculated with the LBC model (Appendix 
A), compared to values from the NIST Chemistry WebBook; the two data sets slightly differ, yet, 
in general, are in agreement.

The density and P-wave velocity of brine (S = 50,000 ppm) as a function of depth are shown 
in Fig. 4. The density decreases with depth, while the P-wave velocity increases down to a depth 
of 3,000 m and, then, decreases.

Fig. 5 shows the viscosity of brine computed with Eq. (20); its value decreases with depth due 
to the temperature increasing.
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Fig. 2 - Specific heat ratio γ (p, Tc) of CO2 (a), CH4 (b), and 
H2 (c); the red dots are γ values obtained by regression 
of velocity data from the NIST Chemistry WebBook.

Fig. 3 - Viscosity of CO2, CH4 and H2 as a function of depth computed with the LBC model compared with data from the 
NIST Chemistry WebBook.
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To model the seismic properties of gas-bearing rocks, a Utsira-like sand characterising 
the Sleipner CO2 reservoir in the central North Sea is considered (e.g. Arts et al., 2004). It is 
a predominantly sandy unit of late Miocene and early Pliocene age with 30% porosity and a 
mineralogical composition of quartz (70%), feldspar (10%), mica (5%), calcite (5%), clay (5%), and 
illite (5%). The average mineral moduli are obtained using the average of the Hashin-Shtrikman 
bounds (Hashin and Shtrikman, 1963); more precisely, Ks = 40 GPa and μs = 38 GPa. The density 
of the composite solid material is given by:

,                                (38)

Fig. 4 - Density (dashed curve) and P-wave velocity (continuous curve) of brine as a function of depth.

Fig. 5 - Viscosity of brine as function of depth.
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Table 3 - Sediment and fluid properties at 800 m and 3,000 m of depth.

  Depth 800 m Depth 3,000 m

 Physical conditions  p = 8.1 MPa  p = 30.1 MPa 

  pc = 18.2 Mpa pc = 67.8 MPa 

   Tc = 39 °C  Tc = 105 °C 

 Sediment  φ = 0.29 φ = 0.17

  Km = 1.39 GPa  Km = 8.75 GPa 

  μm = 0.83 GPa  μm = 5.23 GPa

  κ = 0.41 darcy  κ = 0.06 darcy

 Brine  Kb = 2.6 GPa Kb = 2.7 GPa

  ρb = 1030 kg/m3  ρb = 1004 kg/m3

  ηb = 0.80 mPa s  ηb = 0.35 mPa s

 CO2 Kg = 9.97 MPa  Kg = 115.71 MPa

  ρg = 310 kg/m3  ρg = 644 kg/m3

   ηg = 25.25 μPa s  ηg = 53.72 μPa s

 CH4 Kg = 11.37 MPa  Kg = 59.17 MPa

  ρg = 56 kg/m3  ρg = 152 kg/m3

  ηg = 13.13 μPa s  ηg = 21.67 μPa s

 H2 Kg = 11.98 MPa  Kg = 48.90 MPa

  ρg = 6 kg/m3 ρg = 17 kg/m3

  ηg = 8.08 μPa s  ηg = 9.62 μPa s

where fi is the fraction of the i-th mineral per unit volume of total solid and ρi is its density; 
ρs = 2600 kg/m3 is obtained. The following properties are also assumed: G = 30 °C/km, 
ρ-b = 1020 kg/m3, ρ- = 2300 kg/m3, φ0 = 0.36, pφ = 50 MPa, A = 6.8, B = 0.63, S = 50,000 ppm, and 
κ0 = 8 darcy.

The properties of the sediment and fluids are calculated at depths of 800 and 3,000 m, and 
are summarised in Table 3. To model the anelastic properties of the rock, the Johnson model with 
patchy saturation (see Appendix B) and a seismic frequency of f = 30 Hz is used. Two different 
patch geometries are considered, namely the concentric sphere geometry and a fractal (irregular) 
geometry. In the first case, an inner gas-saturated sphere is surrounded by an outer brine-
saturated sphere with a radius of 30 cm. To obtain the fractal patch, we proceed as described in 
Picotti et al. (2010): the starting point is a spherical patch with size factor T and shape factor S/V, 
followed by the deformation of the patch from a sphere to a fractal rough shape, by maintaining 
T constant and multiplying S/V of the original spherical patch by a factor of 10.

Fig. 6 shows the P-wave velocity as a function of brine saturation for the Utsira-like sand 
partially saturated with CO2, CH4, and H2 at 800 and 3,000 m of depth. These properties were 
determined using the Johnson model with spherical patches (solid line) and the Gassmann 
equation, where the modulus of the pore-fluid mixture is calculated using either the Wood 
formula [Eq. (21)] (dashed line) or the Brie equation [Eq. (22)] (dotted line). To quantify the Brie 
exponent, e, the P-wave velocity [Eq. (31)] is fitted as a function of saturation with Eq. (29) using 
the effective fluid modulus from Eq. (22). At a depth of 800 m, the Brie coefficient is e = 7.3 for 
the three gases and provides a fairly good fit to the Johnson curves. For z = 3,000 m, the Brie 
coefficient is e = 5 for H2 and 4.6 for CO2 and CH4.
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The P-wave velocity and dissipation factor (1,000/Q) determined with the Johnson model for 
spherical and fractal gas patches, as a function of brine saturation and at depths of 800 and 3,000 
m, are shown in Fig. 7. At shallower depths, the velocity and attenuation of the partially saturated 
sediment are very similar, regardless of the gas and saturation value considered. In contrast, these 
seismic properties differ at 3000 m of depth, especially for CO2 compared to CH4 and H2.

Fig. 8 shows the P-wave velocity and the dissipation factor of the Utsira-like sand partially 
saturated with the three gases (sb = 0.8) as a function of frequency at z = 800 m (Figs. 8a and 8b) 
and z = 3,000 m (Figs. 8c and 8d). The attenuation, due to mesoscopic-loss effect, is significant 
due to the properties of the Utsira-like sand, i.e. high porosity, high permeability, and low 
frame moduli. As expected, the rock becomes stiffer and less attenuating at 3,000 m of depth. 

Fig. 6 - Seismic P-wave velocity as a function of brine saturation for CO2 at 800 m (a) and 3,000 m (b) of depth; CH4 at 
800 m (c) and 3,000 m (d) of depth; and H2 at 800 m (e) and 3,000 m (f) of depth. The seismic frequency is f = 30 Hz.
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Fig. 7 - The Johnson seismic P-wave velocity and dissipation factor as a function of brine saturation, at 800 m of depth 
(panels a and b) and 3,000 m of depth (panels c and d). The seismic frequency is f = 30 Hz.

Fig. 8 - The Johnson seismic P-wave velocity and dissipation factor as a function of frequency of a sediment partially 
saturated (sb = 0.8) with CO2, CH4, and H2 at 800 m (panels a and b) and 3,000 m of depth (panels c and d).
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Fig. 9 - Seismic S-wave velocity (black) and density (red) as a function of brine saturation, corresponding to CO2 (solid 
lines), CH4 (dashed lines) and H2 (dotted lines) for z = 800 m (a) and z = 3,000 m (b).

Fig. 10 - Seismic P-wave velocity and dissipation factor as a function of frequency of a sediment partially saturated 
(sb = 0.8) with H2 (solid line) at 800 m (panels a and b) and 3,000 m of depth (panels c and d) and corresponding fits 
with the Cole-Cole model (crosses).

As observed by Picotti and Carcione (2017) and Picotti et al. (2010), the shape of the curves 
corresponding to the two patch geometries results to be similar, but as the patch irregularity 
increases, the relaxation peak shifts to higher frequencies while the maximum loss decreases. 

Fig. 9 shows the S-wave velocity and density of the Utsira-like sand partially saturated with 
CO2, CH4, and H2 at 800 m (Fig. 9a) and 3,000 m (Fig. 9b) of depth. The variation in S-wave velocity 
is due to a density effect, as the wet-rock shear modulus is equal to the dry-rock shear modulus.

An equivalent viscoelastic medium, based on the Cole-Cole model, is taken into consideration 
for setting up the differential equations for the computation of the synthetic seismograms. 
Fig. 10 shows the fit of the Johnson P-wave velocity and the dissipation factor as a function of 
frequency for z = 800 m (Figs. 10a and 10b) and z = 3,000 m (Figs. 10c and 10d). The fits are very 
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Fig. 11 - Attenuation factor as a function of 
frequency for a sediment partially saturated 
with H2 (sb = 0.8) at 800 m and 3,000 m of 
depth and for spherical and fractal patches.

good, especially in the region of the relaxation peak. Even if the fits at high frequencies are not 
mathematically perfect, these results show that the Cole-Cole model is a good approximation 
for practical purposes.

Finally, Fig. 11 shows the attenuation factor as a function of frequency. Within the 
seismic frequency band, the attenuation is larger at 800 m than at 3,000 m, regardless of the 
geometry of the gas patches. At sonic frequencies, or higher, the signal is strongly attenuated 
at 800 m for both the spherical and fractal patch distribution and at 3,000 m for the fractal 
geometry.

5. Conclusions

The seismic time-lapse method is essential for detecting and monitoring the presence of gas 
in geological formations. The success of seismic monitoring depends on a correct description of 
the physical properties of the gas-bearing rock.

In the case of patchy gas saturation, the petro-elastic model predicts higher velocities than in 
the case where gas and brine are mixed in the pore space. In this study the Brie equation is used 
to determine the bulk modulus of the gas-brine mixture. Moreover, the Cole-Cole model is used 
to approximate the seismic velocity and quality factor determined by the mesoscopic Johnson 
model to compute synthetic seismograms in the time domain. The attenuation due to mesoscopic 
loss presents a maximum at low gas saturation between 10% and 30% and is significant for the 
case presented in this work, i.e. for a sandstone with high porosity, high permeability and low 
framework moduli.

The proposed petro-elastic model enables to directly control reservoir properties such as 
dry-rock modulus, porosity, permeability, and fluid properties, as well as in-situ conditions such 
as pore pressure and temperature.
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Appendix A: the viscosity of gases

The viscosity of gases, ηg, can be computed as a function of the gas density, ρg, with the LBC 
model (Lohrenz et al., 1964):

,                     (A1)

where a0 = 0.10230, a1 = 0.023364, a2 =0.058533, a3 = -0.040758, a4 = 0.0093324, and 
ρcr =  is the critical density. Critical volumes Vcr of H2, CO2, and CH4 are listed in Table 1. The 
viscosity- reducing parameter is given by:

(A2)

and the low-pressure viscosity by:

(A3)
,
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Appendix B: the Johnson model

A seismic compressional wave travelling through a rock characterised by patchy saturation 
induces a pressure disequilibrium between brine and gas saturated regions, which tend to 
equilibrate by developing the diffusive Biot acoustic slow wave. This phenomenon causes 
wave-velocity dispersion and compressional wave attenuation and is governed by the size and 
distribution of the patches, frequency, permeability, and porosity of the medium (Johnson, 
2001). The wave-induced fluid flow process related to the Biot slow wave is characterised by the 
critical fluid diffusion relaxation length, given by:

,                                (B1)

where ω = 2πf is the angular frequency and D (Kf) is the diffusivity constant, defined in each 
saturated region as:

,                                 (B2)

where κ is the rock permeability, η is the fluid phase viscosity and KE is (Carcione and Picotti, 
2006):

.                                (B3)

In this expression, M– is given by Eq. (28).

(B4)

is the dry-rock P-wave modulus, and

(B5)

(Carcione, 2022), where KG (Kf) is the Gassmann bulk modulus [Eq. (27)].
At low frequencies, the patch size is smaller than diffusion length Lc and there is sufficient 

time for the pore pressure to equilibrate, inducing an isostress regime. In such a case, the 
effective bulk modulus of the composite medium, at the low frequency limit, is independent 
of the spatial distribution of the fluids and is given by the Gassmann expression KGW = KG (KW), 
where the effective modulus of the composite pore fluid is given by the Wood equation [Eq. 
(21)]. In the high-frequency limit, the patch size is larger than Lc and there is no time for pressure 
equilibration. The pore pressure is not uniform throughout the medium, however, it can be 
considered constant within each fluid phase. In such a case, the effective bulk modulus is given 
by the equation (Hill, 1964):

,                (B6)
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where sg and sb are the gas and brine saturations, respectively. The high-frequency P-wave 
modulus is given by

(B7)

At intermediate frequencies, the size of the patches and the diffusion length are comparable. 
In such a case, Johnson (2001) introduced a dynamic bulk modulus:

,                     (B8)

where i is the imaginary unit, ζ is a shape parameter and τ sets the frequency scale. When ζ < 1 the 
crossover region is quite broad, whereas when ζ > 1 it is quite narrow. ζ and τ can be separately 
computed from parameters S/V and T, which depend on the geometry of the patches (Johnson, 
2001; Picotti et al., 2010). The specific surface area, S/V, (the ratio between the boundary area 
separating the two phases, S, and the patch volume, V), is governed by the shape of the patches 
and, therefore, it is called ‘shape factor’. Considering concentric spherical geometries (Johnson, 
2001), where an inner gas-saturated sphere of radius a is surrounded by an outer brine-saturated 
sphere of radius b (b > a):

(B9)

The parameter T is governed by the mean size of the patch in a complicated and non-local 
way, which can be solved only with certain simplifying geometries (Johnson, 2001). For the 
concentric spherical geometry:

(B10)

where

(B11)

In Eqs. (B10) and (B11) subscripts 1 and 2 indicate the gas and liquid phases, respectively.
Ultimately, the P-wave modulus is:

(B12)

and the complex P-wave velocity is:

,                           (B13)

where ρ is the rock bulk density [Eq. (30)].

,
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Appendix C: the Cole-Cole model 

To obtain the equivalent viscoelastic medium, the Cole-Cole model (Cole and Cole, 1941) 
is used. The stress-strain relationship in the frequency domain (based on irrational powers of 
frequency) can be represented in the time domain as a differential equation with fractional 
order derivatives (e.g. Carcione et al., 2021). The dimensionless complex modulus of a Cole-Cole 
element can be expressed:

,                            (C1)

where τσ and τε are relaxation times, 0 ≤ q < 2 is a real number, i = √
__

 is the imaginary number 
and ω = 2πf is the angular frequency; q = 0 corresponds to the lossless case, while with q = 1, 
the Zener model is obtained (Carcione, 2022). The quality factor related to M~ is Re(M~ )/Im(M~ ) 
where Re and Im denote real and imaginary parts, respectively. The maximum dissipation factor, 
corresponding to the minimum quality factor is located at:

(C2)

and is equal to:

(C3)

Using ω0 and Q0 as parameters, the following is obtained:

,                          (C4)

where β is a solution of Eq. (C3):

(C5)

The unrelaxed (high-frequency) modulus is (τε/τσ)
q .

The Cole-Cole model stress (σ)-strain (ε) differential equation, corresponding to the kernel 
[Eq. (C1)], is (Picotti and Carcione, 2017):

,                         (C6)

where MR is a relaxed (low-frequency) stiffness, i.e. the Gassmann modulus.
When τε = 0, the Kelvin-Voigt model is obtained. If Q0 → ∞, the low-frequency elastic limit is 

reached, with β = 1, τε = τσ and M~  = 1.


