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ABSTRACT The main goal of this study is to demonstrate how fusion methods can be used in mineral 
prospectivity mapping (MPM) through a comprehensive multi criteria decision-making 
(MCDM) analysis. MPM plays a crucial role in mineral exploration by aiming to lower 
exploration expenses through identifying potential ore-bearing targets and planning 
detailed exploration surveys, including drilling. This study utilises various methods 
including index overlay, Old TOPSIS, Modified TOPSIS, Adjusted TOPSIS, Old VIKOR, 
Modified VIKOR, fuzzy gamma operator, fuzzy ordered weighted averaging (FOWA) 
with different strategies, and fuzzy inference system (FIS). The study area chosen 
for comparison of various fusion techniques is the Sonajil Cu-Au porphyry deposit 
located in the east Azerbaijan province, which is the main focus of the investigation. 
Geological factors, including rock units and faults, remote sensing data for alteration, 
geochemical analysis using soil samples, and geophysical factors from reduced to the 
pole magnetic data, are employed in the indicator maps to assess the potential of the 
region. To delineate the prospective area in terms of ore-trapping favourability, a fractal-
based analysis was applied to all fusion outputs, resulting in the identification of five 
distinct perspective areas. The efficacy of different MPMs was assessed and compared 
using subsurface data from 21 boreholes, showing consistent agreement rates among 
all methods. The FIS showed a 79% agreement, whereas the FOWA, with its optimal 
strategy, exhibited an 81% agreement, emphasising their effectiveness compared to 
alternative approaches. The predicted maps show a close connection with the geological 
features of the host rock, particularly granitoid and andesite porphyry from the Sonajil 
formation, along with the presence of potassic and phyllic alterations. The FIS and FOWA 
models have successfully pinpointed new drilling sites and assisted in evaluating mining 
potential for future exploration and development. By utilising this comparative model, 
which evaluates different algorithms to determine the most accurate prediction map, 
significant progress has been made in exploratory studies.

Key words: index overlay, TOPSIS, VIKOR, fuzzy gamma operator, fuzzy ordered weighted averaging, fuzzy 
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© 2024 - The Author(s)

1. Introduction

Mineral prospectivity mapping (MPM) plays a crucial role in exploration projects by identifying 
potential areas for new mineral deposits using a combination of geospatial data. The MPM, 
functioning as a multi criteria decision-making (MCDM) issue, greatly impacts the chance of 
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exploration success. It is divided into two primary categories: knowledge-driven and data-driven 
methods, as detailed by Bonham-Carter (1994). Geological interpretations, observations, and the 
expertise of geoscientists play a crucial role in the former category, which focuses on exploring 
unknown mineral deposits in greenfield regions. On the other hand, the latter, which deals with 
known mineral deposits, analyses spatial correlations among geospatial patterns in brownfield 
regions to discover further ore-bearing zones. In the sphere of MPM, there is a growing focus on 
integrating knowledge- and data-driven models to identify specific areas of interest for different 
types of mineral deposits. This approach, exemplified by studies from researchers like Porwal et 
al. (2006), Yousefi and Carranza (2015, 2016), Barak et al. (2021), and Yousefi et al. (2021, 2023), 
combines the strengths of different methods through a hybrid model, effectively minimising 
any potential limitations or drawbacks. However, it is worth noting that these limitations are 
not always explicitly mentioned in the studies. In recent years, the integration of extensive and 
diverse data sets across various scales has led to significant advancements in MPM techniques, 
which have been a central focus for many scientists. Determining the most suitable method 
or technique for MPM is not governed by a universally applicable rule. Instead, researchers 
have successfully utilised various fusion methods, showcasing a range of approaches. Various 
methodologies have been employed in the field of MPM, such as fuzzy logic demonstrated in 
works by Knox-Robinson (2000), Barak et al. (2018a, 2018b), and Sanusi and Amigun (2020). 
Furthermore, fuzzy inference systems (FISs) have been investigated in studies by Barak et al. 
(2018a, 2018b, 2020, 2021), while fuzzy outranking techniques have been utilised in works 
by Abedi et al. (2012, 2013). Fuzzy analytical hierarchy process (AHP) was used according to 
Zhang et al. (2017), along with other approaches like fuzzy weights of evidence (Cheng and 
Agterberg, 1999), fuzzification of continuous-value data (Yousefi and Nykänen, 2016), and the 
ordered weighted averaging approach pioneered by Yager (1988). Each method brings unique 
perspectives and capabilities to the field of MPM. Porphyry copper deposits are created by 
hydrothermal fluids from a magma reservoir deep below the deposit, serving as crucial sources 
of copper, molybdenum, and gold for industrial and societal needs (Park et al., 2021). Studies 
show that these deposits are linked to various mineral occurrences, including high-sulfidation 
epithermal deposits with copper, gold, and silver, as well as intermediate-sulfidation polymetallic 
deposits hosting lead, manganese, zinc, and silver (Sillitoe, 2010). Moreover, porphyry copper 
deposits can also play a role in forming distal skarn deposits, showcasing the diverse mineral 
associations and complex nature of their formations (Hedenquist et al., 1994).

The Sonajil region has been extensively explored for Cu-porphyry deposits, by ESPEER (2007). 
Despite these endeavours, no economically viable mineral reserves have been found. This study 
aims to create mineral potential maps for the Sonajil deposit using integration techniques such as 
index overlay, TOPSIS, VIKOR, fuzzy gamma operator, fuzzy ordered weighted averaging (FOWA), 
and FIS. These methodologies utilise a fuzzy approach to integrate geospatial data, consistent 
with previous research by Abedi et al. (2017) on multi-method data integration in MPM. MPM 
techniques’ effectiveness relies heavily on the quality of geospatial data sets used. This study 
merged criterion layers derived from various types of data, such as geological, geochemical, 
geophysical, and remote sensing data, to achieve comprehensive data integration. The resulting 
mineral potential maps were, then, compared to each other. To validate the accuracy of the 
copper favourability maps, data from 21 boreholes were utilised. The significance of this research 
lies in identifying the most efficient MPM approach for mapping Cu-Au favourability. Ultimately, 
the maps generated from this study highlight the effectiveness of the FIS and FOWA.
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2. Geology and mineralisation of the Sonajil area

The study area is located in the north-eastern region of the 1:100,000 geological map of Ahar 
and is part of the Urmieh-Dokhtar Magmatic Arc as classified by Iran’s structural geology zones 
(Stocklin, 1968) (Figs. 1a and 1b). The geological formations in this area consist of various rock 

Fig. 1 - The Sonajil geological 
map with a scale of 1:10,000, 
within the Iran structural map 
(a, b); the intrusive unit included 
granite to highly altered and 
leached granodiorite (c); and 
the malachite mineral traces on 
the surface mineralised area (d).
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units, such as Eocene lava, Oligocene intrusive masses of granodiorite to monzodiorite, diorite 
to diabase dykes, Quaternary basic lava, and Quaternary sediments, all at a scale of 1:1000. 
It is important to highlight that these volcanic activities have greatly impacted the geological 
characteristics of the region, including magma formation and placement, fault formation, 
regional uplift, and rotational movements (Imamalipour and Barak, 2019; Barak et al., 2023).

The Eocene lava formations in the area consists of andesitic to latite-andesitic lava, which often 
show propylitic alteration. The intrusive unit is composed of granodiorite, which has undergone 
extensive alterations and exhibits copper mineralisation. Argillic alteration has been observed, 
and pyrite and other sulphide minerals have undergone significant washing and leaching 
processes. When the granodiorite mass comes into contact with the Eocene lavas, it undergoes 
alterations with the presence of numerous silica veins. Within the altered granodiorite mass, 
patches of more basic masses with micro-monzodiorite to micro-diorite compositions have been 
observed. These rocks show comparatively less alteration and have a darker coloration in manual 
samples. Mineralisation is predominantly observed within these rocks, with traces of malachite 
visible in the rock texture. Manual samples also show the presence of secondary biotites and 
orthosis. Potassic alteration is the prevailing alteration, although partial occurrences of propylitic 
alteration (secondary biotites transforming into chlorite and epidote) have been noted.

The diabase to diorite dykes intersects both the igneous mass and Eocene rocks, displaying 
green to dark colours with a micro-granular texture. Mineralisation in these dykes is minimal, 
with only traces of malachite minerals visible in certain outcrops (see Fig. 1d). The Quaternary 
volcanic rock unit consists of basaltic to basaltic andesite lava formations, mainly found in 
the southern and western regions, showing a lack of mineralisation. Additionally, Quaternary 
pyroclastic rocks are present at the base of this unit.

3. Geospatial data set

The predictive model for ore mineralisation was developed by utilising various evidence 
layers from the geospatial data set in line with the porphyry mineralisation conceptual model. 
These layers included a geochemical map from previous studies (Barak et al., 2018a, 2018b, 
2020, 2021), a magnetometry map by Ranjbar et al. (2004), intrusive igneous rock units focusing 
on metalogenic factors, and significant alteration types associated with porphyry deposits 
(Lickfold et al., 2007; Sillitoe, 2010). Lineament and fault indicator maps served as conduits for 
Cu-bearing fluids (Campos et al., 2002). Furthermore, various alteration types commonly linked 
to porphyry deposits such as potassic, phyllic, argillic, and propylitic alterations were employed 
in this research (Sillitoe, 2010; Barak et al., 2021).

Four primary criteria were utilised in this research. Table 1 presents an overview of these 
criteria, including the layers of indicators and the normalised scores assigned to each criterion 
within the Sonajil region. It is important to mention that all indicator maps were created using a 
cell size of 20×20 m2.

3.1. Geological indicators

Sillitoe’s (2010) research was consulted to assess the importance of rock units and fault 
zones in the Sonajil deposits, revealing that the predominant host rocks are part of the acidic 
internal igneous rock group, including granite, granodiorite, tonalite, quartz monzonite and 
diorite. The construction of the rock unit layer for the Sonajil area involved considering the 
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relevance of surrounding rocks in relation to ore body formation in porphyry deposits, leading 
to the assignment of scores. Consistent with Sillitoe’s (2010) findings, granitoid units like quartz 
monzonite, granite, and granodiorite were given higher scores, while basaltic lava flows, young 
alluvium, old/young terraces, and river deposits received lower scores as depicted in Fig. 2a. 
Sillitoe (2010) has highlighted the significance of fractures in porphyry-type copper mineralisation 
areas as indicators for exploration due to their role as conduits for ore fluids. Faults, fractures, 
shear zones, and spatial stresses play a crucial role in magma concentration and movement 
in shallow crustal regions (Dewey and Ryan, 1990). Geological faults were identified from the 
geological map and analysed using remote sensing imagery data. A buffering technique was 
utilised to score faults, with areas near faults given higher weights for their influence (Fig. 2b). To 
gain a deeper understanding of the methodologies used in creating geological and faults maps, 
readers are recommended to review the research conducted by Barak et al. (2023).

Table 1 - The normalised scores assigned to factor layers in the Sonajil area.

 Criteria Scores Evidence layer Scores Reason of using
 Geology 0.269 Rock units 0.700 Suitable area for ore–metal occurrence
   Fault areas 0.300
 Remote sensing 0.260   Alteration zones
 Geochemistry 0.320 Copper (Cu) anomaly 0.550 Ore–metal enrichment
   Gold (Au) anomaly 0.450 
 Magnetic (RTP) 0.151   Reflect the location of alteration zones

Fig. 2 - Geological evidential layers of: a) rock units, and b) faulted area map. 

3.2. Alteration indicator

Satellite image data analysis can detect hydrothermal alteration zones, with ENVI 4.8 software 
used for processing an ASTER image in Sonajil. Techniques including both spectrum-based 
methods (Spectral Angle Mapper, Spectral Feature Fitting, Mixture Tuned Matched Filtering) 
and image-based approaches [RGB analysis, Relative Absorption Band Depth (RBD), Principal 
Component Analysis] were employed to identify alterations.

Applying satellite scenes to diagnose data by integrating various bands rather than individual 
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band presentation is called false-colour composite (RGB). According to Rajendran et al. (2011), 
the use of RGB composites, specifically RGB (456), RGB (468), and RGB (468), is effective in 
identifying phyllic, argillic, and propylitic alteration zones. The RBD is an extremely basic and 
popular approach in remote sensing. Its idea is to highlight or overstate the anomaly of the target 
(Abrams et al., 1983). The technique employed here aims to create distinct mineral zones from 
ASTER images. By dividing the maximum reflection by the maximum absorption, an indicator 
map is generated. This map helps identify alteration zones by analysing the spectral properties 
of the constituent minerals. The detection of phyllic alteration in this study involved the use of 
sericite and the [(Band5+Band7) / Band6] ratio. To identify kaolinite mineral and argillic alteration, 
the [(Band4+Band6) / Band5] ratio was utilised. Lastly, chlorite was employed for extracting 
propylitic alteration through the band ratio [(Band7+Band9) / Band8]. The outcrops of the main 
alteration have been effectively identified in recent decades using the ASTER image, which 
benefits from three distinct spectral systems and a total of 14 bands (Tommaso and Rubinstein, 
2007; Esmaeilzadeh et al., 2023). Tommaso and Rubinstein (2007) demonstrated that, by 
examining particular silicate and carbonate mineral outcrops in thermal bands (8-12 μm), quartz 
presence can be identified within the potassic zone, showing absorption in the 10 and 12 bands 
and reflection in the 11 band. Therefore, by the inverse of Qi ratio {[(b11×b11)/(b10×b12)]×(–1)} 
the potassic alteration can be detected in porphyry deposits (Ninomiya, 2003). PCA, also known 
as principal component analysis, serves as a technique for reducing the dimensionality of 
extensive data sets. It achieves this by converting a multitude of variables into a smaller set 
that retains the majority of the original information (Fauvel et al., 2009). By examining the 
absorption and reflection bands associated with sericite mineral, the 4, 6, and 7 bands are 
identified as indicators of phyllic alteration. The detection of kaolinite (argillic) is achieved using 
bands 4, 5, and 7, while chlorite (propylitic) can be identified through bands 1, 6, 7, and 9.

In this study, spectrum-based techniques were used to map alterations. Reference spectra 
of pyrite, kaolinite and chlorite, were selected for phyllic, argillic and propylitic alterations, 
respectively. The Spectral Angle Mapper method was employed to assess the spectral similarity 
between the image spectra and the reference spectra by calculating the angles between 
them. Smaller angles indicate a higher degree of resemblance, while larger angles signify a 
lower degree of resemblance (Girouard et al., 2004). For the Sonajil porphyry deposit, optimal 
angles for phyllic, argillic, and propylitic alterations were determined to be 0.085, 0.17, and 
0.16 respectively. These angles were found to be the most suitable to accurately identify and 
characterise these specific types of alterations within the deposit area.

Spectral Feature Fitting (SFF), introduced by Clark et al. (1991), leverages absorption features 
in spectra and employs a sequential elimination approach along with square fitting algorithms 
to detect mineral substances. While SFF is frequently applied in hyperspectral imagery analysis 
to identify intriguing targets, it does not consistently guarantee superior accuracy in extracting 
image data under all conditions, as highlighted by Pan et al. (2013) in comparison to other 
remote sensing analysis techniques. Mixture Tuned Matched Filtering (MTMF) represents an 
extension of Matched Filtering (MF) by incorporating an infeasibility image into the results. 
The introduction of this infeasible image aims to mitigate the occurrence of false positives that 
may arise when utilising MF alone. Pixels demonstrating high infeasibility are more likely to 
be classified as false positives. Validly mapped pixels exhibit a higher score compared to the 
background distribution around zero, while unreasonably low values indicate potential false 
positives. These infeasibility values are measured in sigma noise units, which differ on the DN 
(Digital Number) scale from the MF score. MTMF is designed to enhance the spectral resolution 
of hyperspectral imagery, thereby facilitating the identification of the presence and potential 
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frequency of specific phenomena within a defined region of interest. With advancements in 
remote sensing and image analysis, the detection and mapping of phenomena within a scene 
using satellite data and sophisticated software have become more achievable for land managers 
(Boardman, 1998; Williams and Hunt, 2002; Harris and Bryant, 2009). These methodologies and 
technological advancements contribute to more refined and precise analyses of phenomena 
within given regions using satellite imagery and advanced processing tools.

Porphyry systems are commonly accompanied by various hydrothermal alterations, including 
potassic, phyllic, argillic, and propylitic alterations, as per the conceptual model. Among 
these alterations, the potassic zone is predominantly associated with porphyry systems and 
plays a crucial role in their exploration, often containing the primary portion of the ore body. 
Consequently, it has been assigned the highest score compared to other alteration zones. 
The phyllic, argillic, and propylitic alterations have received subsequent scores based on their 
significance in porphyry deposits. The final alteration indicator layer, shown in Fig. 3, was 
generated using this methodology. For more detailed information on the creation of alteration 
maps and exported ASTER images, interested readers are referred to the research conducted by 
Barak et al. (2023).

Fig. 3 - Alteration evidential layer of the Sonajil area.

3.3. Geochemical indicator

A total of 1,248 lithogeochemical samples were collected by KCE (2006) to generate the 
geochemical layer. The AMDEL laboratory in Australia conducted the analysis using ICP-Mass 
analysis for 43 elements and fire assay analysis for gold. After data pre-processing steps, 
including identifying censored data, adjusting outlier values, and normalising skewed data, the 
descriptive statistical characteristics of the geochemical Cu and Au elements were examined 
(Imamalipour et al., 2019, 2020). The results are given in Table 2. In addition, histograms, box 
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plots, and quantile-quantile (q-q) plots (Figs. 4a, 4b, and 4c) were used to illustrate the skewed 
nature of the data, indicating the potential presence of ore mineralisation in the Sonajil area. The 
Pearson correlation coefficient, a statistical measure used to assess the relationship between 
several variables, showed a correlation coefficient of 0.42 between Cu and Au (as stated in Table 
3). Cluster analysis, a multivariate statistical technique, was conducted on the data following 
the methodology outlined by Barak et al. (2016, 2018a, 2018b). The analysis, depicted in Fig. 
5, revealed a close relationship between Cu and Au among all 43 elements. To differentiate 
anomalous regions from the background in terms of Cu and Au elements, the concentration-
number (C-N) fractal method was employed. This method was utilised for the classification and 
scoring of different geochemical populations for each element (Afzal et al., 2013; Hassanpour and 
Afzal, 2013; Barak et al., 2017; Mami Khalifani et al., 2019). The resulting geochemical indicators 
were generated and plotted (as shown in Figs. 6a and 6b). For more detailed information, readers 
can refer to the study conducted by Barak et al. (2023).

Fig. 4 - Statistical graphs of raw data including: a) histogram, b) boxplot, and c) q-q plots.
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Table 2 - Descriptive statistics of geochemical Cu and Au element of the Sonajil area.

 
Element Minimum Maximum Mean

 Standard 
Variance Skewness Kurtosis

 
	 	 	 	 	 deviation
 Cu 7.100 9890 230.8019 789.9465 624015.5 7.96198 72.09288
 Au 0.000 8890 24.38862 283.4842 80363.29 26.16065 781.8694

Fig. 5 - Cluster analysis of 
normalised geochemical soil 
sample data from the Sonajil 
area.
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3.4. Geophysical indicator

Porphyry copper systems commonly have a central region of Cu mineralisation that is 
surrounded by various alteration zones. Each of these zones is distinguished by different magnetic 
intensity fluctuations. According to Clark et al. (2004), the potassic zone, which is enriched with 
iron-oxide, typically exhibits higher magnetic intensity. On the other hand, the phyllic zones, 
which contain sericite, generally show a decrease in magnetic intensity. The propylitic zone, 
however, experiences a gradual increase in magnetic intensity. These magnetic variations are 
significant focal points for detection in magnetometry studies. The dimensions of the surveying 
grid used were 20×50 m2, with magnetic data showing a significant difference between the 
minimum and maximum values, totalling around 2,400 nT. The Earth’s magnetic field intensity in 
the area was measured at approximately 48,920 nT, with data collected using the SCINTREX ENVI 
pro-proton magnetometer device. The collected data were processed with the International 
Geomagnetic Reference Field and diurnal correlations using the Geosoft Oasis montaj 6.4.2 
software, resulting in the creation of a total field magnetic map. The analysis of the magnetic 
map revealed the presence of two distinct poles, positioned approximately in the middle of 
the anomaly. This bipolar behaviour added a level of complexity to the analysis. To address this 
complexity, a reduced-to-pole (RTP) filter was utilised. The RTP filter adjusts the magnetic data to 
align with the magnetic pole. At the Earth’s magnetic north pole, the positive pole directly above 
the source becomes stronger, while the negative pole weakens and shifts towards the periphery 
of the anomaly. This simplifies the overall complexity of the magnetic field intensity map by 
aligning the magnetic origins with the positive pole. This filtering technique aids in identifying 

Fig. 6 - Geochemical evidential layers of: a) Cu, b) Au.

Table 3 - The Pearson correlation coefficient of selected minerals of the Sonajil area.

 Element Ag Au Cu Mo Pb Zn
 Ag 1.00
 Au 0.04 1.00
 Cu -0.04 0.42 1.00
 Mo 0.01 0.27 0.23 1.00
 Pb 0.03 0.23 0.12 0.45 1.00 
 Zn 0.06 0.10 0.32 -0.19 -0.08 1.00



11

A case study from the Sonajil porphyry copper deposit, north-western Iran Bull. Geoph. Ocean., XX, XXX-XXX

mineralisation zones based on the positions of maximum anomalies (Schattner et al., 2019). 
Different classes were assigned weights to contribute to the creation of the final geophysical 
map, shown in Fig. 7. This map offers a detailed representation of magnetic anomalies, assisting 
in pinpointing mineralisation zones in the surveyed region. To delve deeper into geophysical 
layer preparation, readers are advised to refer to the research by Barak et al. (2023).

Fig. 7 - Geophysical magnetometry evidential layers of the RTP.

4. Geospatial data fusion methodologies

Fusion techniques were integrated into the Sonajil region by creating a detailed collection 
of six exploration proxies based on the exploratory geo-data set. The proxies included geology, 
remote sensing, geophysics, and geochemistry criteria layers, which underwent meticulous 
curation and assessment by a team of knowledgeable experts and geologists familiar with the 
study area’s intricacies. The decision-making process was visualised using a decision tree diagram 
(Fig. 8), which showed that the final potential maps were created by combining: 1) two layers 
containing fault and rock type maps, 2) two layers obtained from Cu and Au factors extracted 
from soil sample geochemical data, 3) a layer generated from reduced-to-pole magnetics 
data, and 4) an alteration layer derived from remote sensing data. The Sonajil area utilised the 
Delphi technique, a well-known knowledge-based weighting approach, to assign normalised 
values to each exploratory layer. This allowed for the evaluation of the relative importance and 
contribution of each layer in the overall analysis. Various methods were employed in the study, 
including index overlay, Old TOPSIS, Modified TOPSIS (M-TOPSIS), Adjusted TOPSIS (A-TOPSIS), 
Old VIKOR, Modified VIKOR, fuzzy gamma operator, FOWA with different α parameters, and FIS. 
The advantages and disadvantages of these methods are discussed in Table 4. The subsequent 
sections provide a comprehensive overview of these methods.
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4.1. Index overlay

The initial method utilised in this research is referred to as the multi-class index overlay, a 
knowledge-based technique commonly employed during the preliminary exploration stage, 
especially in regions with limited known mineral occurrences or in greenfield areas (Carranza, 
2008). This technique involves transforming all fractal layers into a grid format and integrating 
them using a Boolean operation. Each layer contains various classes with assigned weights, 
which are multiplied by corresponding values to produce scores for individual elements, 
whether they are polygons or pixels. Subsequently, these scores are aggregated across the 
layers, integrated, and normalised. Notably, index overlay offers flexibility in presenting 
the priority or weightage assigned to the studied factors (Bonham-Carter, 1994). Hence, 
this approach is valuable for comparing and evaluating fusion models in assessing mineral 
potential.

The Sonajil data set underwent analysis using the index overlay fusion technique in this 
research. The delineated zones, categorised into five classes based on potential grades, were 

Fig. 8 - The decision tree 
flowchart for generating 
final prospectivity map.

Fig. 9 - The generation of MPM through the index overlay approach (b) is informed by a fractal-based curve computation (a).
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Table 4 - The advantages and disadvantages of the methods applied in this study.

Method
 

Index Overlay 
(e.g. Bonham-Carter, 1994; 

Carranza, 2008). 

 
Old TOPSIS 

(Hwang and Yoon, 1981; 
Chen and Hwang, 1992). 

 
 

M-TOPSIS (Ren et al., 2007). 
 

 
 

A-TOPSIS 
(Deng et al., 2000). 

 

 
 

Old VIKOR 
(Opricovic, 1998). 

 

 
 
 

Modified VIKOR (Chang, 2010). 
 
 

 
 

Fuzzy gamma operator 
(Zadeh, 1965). 

 

 
 

FOWA 
(Yager, 1988). 

 

 
FIS 

(e.g. Mamdani 
and Assilian, 1975; 
Porwal et al., 2015; 
Barak et al., 2021). 

Advantages
 

Simple and easy to understand. 
Allows combining different 
criteria into a single index. 

Provides a ranking of alternatives 
based on their proximity to an 

ideal solution. 
Considers both the best and worst 

performance of alternatives.
Addresses some of the limitations 

of the original TOPSIS method. 
Offers more flexibility in handling 

different types of data and 
preferences.

Incorporates adjustments 
to better account 
for uncertainties 
and preferences. 

Offers improved robustness 
compared to standard TOPSIS.

Provides a compromise solution 
that balances conflicting criteria. 
Allows for the consideration of 
both the distance to the ideal 

solution and the proximity to the 
negative ideal.

Offers improvements on the 
original VIKOR method, such as 

addressing uncertainties and 
preferences more effectively. 

Provides a compromise solution 
considering multiple conflicting 

objectives.
Allows for the modelling 

of uncertainty and vagueness 
in decision-making. 

Can handle imprecise 
or qualitative data 

effectively.
Offers a flexible framework 
for aggregating criteria with 
different importance levels. 

Allows adjusting 
aggregation strategies using 

α parameters.
 

Provides a systematic approach to 
handle uncertainty and vagueness 

in decision-making. 
Can model complex relationships 
between criteria and alternatives. 

Disadvantages
Assumes linear relationships 

between criteria, which may not 
always hold. 

Difficulties in assigning 
appropriate weights to criteria.

Sensitive to the choice of 
normalisation methods. 

Assumes that the distance to the 
ideal and non-ideal solutions are 

equally important.
Increased complexity compared 

to the original TOPSIS. 
Requires careful consideration 

of modifications for specific 
applications.

May require additional data 
or information for adjustment 

parameters. 
Complexity might increase with 

adjustments, making it more 
challenging to implement.

May not handle 
uncertainties well. 

Complexity increases 
with the number 

of criteria 
and alternatives.

 
Increased complexity compared 

to the original VIKOR. 
Requires careful consideration 

of modifications for specific 
applications. 

Choice of membership functions 
and gamma operator parameters 

can affect results significantly. 
Interpretation of fuzzy logic 

results might be challenging for 
some decision-makers.

Complexity increases with 
the number of criteria and 

alternatives. 
Selection of appropriate α 

parameters may require expert 
knowledge or sensitivity analysis.

Requires significant computational 
resources, especially for large 

decision problems. 
Construction and tuning of fuzzy 
rules and membership functions 

can be subjective and time-
consuming.
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represented clearly through a curve derived from fractal computations (Figs. 9a and 9b). This 
classification assists in identifying and prioritising areas for further exploration and analysis by 
showcasing different levels of mineral potential within the surveyed region.

4.2. Technique for Order Performance by Similarity to Ideal Solution (TOPSIS)

Hwang and Yoon (1981) introduced the TOPSIS algorithm, later refined by Chen and Hwang 
(1992) and further enhanced by Chen (2000) in a fuzzy environment. This method is widely 
recognised as a leading technique for addressing MCDM problems, as highlighted by Opricovic 
and Tzeng (2004) and Tavana and Hatami-Marbini (2011). TOPSIS operates on the principle that 
the selected alternative should be closest to the positive ideal solution (PIS) and farthest from 
the negative ideal solution (NIS). The PIS aims to maximise benefit criteria and minimise cost 
criteria, while the NIS aims to maximise cost criteria and minimise benefit criteria, as explained 
by Wang and Elhag (2006). The traditional TOPSIS method determines criteria weights based on 
precise data, while the fuzzy TOPSIS method considers fuzzy conditions and linguistic variables to 
better reflect real-world decision-making scenarios. Notably, there exist three prevalent variants 
of the TOPSIS method: 1) the old TOPSIS (Hwang and Yoon, 1981), 2) the A-TOPSIS (Deng et al., 
2000), and 3) the M-TOPSIS (Ren et al., 2007).

This research drew inspiration from Abedi and Norouzi’s (2016) study and applied three 
different versions of TOPSIS in MPM. The variations combined evidential layers from the Sonajil 
area data set, resulting in successful identification of high-potential zones. The MPMs generated 
by the TOPSIS variants categorised the layers into five classes using a fractal-based curve, offering 
a clear depiction of mineral potential levels in the surveyed area (Fig. 10).

4.3. VIKOR

Introduced by Opricovic (1998), VIKOR is an MCDM method specifically designed for decision-
making scenarios involving contradictory and non-commensurable criteria. The technique aims 
to identify the alternative that best approximates the ideal solution by evaluating all criteria. 
VIKOR prioritises multi-criteria and determines the approach that is closest to an optimal solution. 
Opricovic (2011) later developed fuzzy VIKOR to handle fuzzy concepts, where criteria and values 
are assessed within the 0 to 1 range. This extension of VIKOR simplifies real-life problems by 
accommodating linguistic variables. There are two primary variations of the VIKOR method: the 
original Old VIKOR, introduced by Opricovic (1998), and the Modified VIKOR, developed by Chang 
(2010). Abedi et al. (2016) successfully utilised this method in MPM. In this particular study, both 
the original and modified versions of the VIKOR method were applied to evidential layers, as 
shown in Figs. 11a to 11d. These techniques have aided in the prioritisation and classification of 
potential zones within the Sonajil area, offering valuable insights into varying levels of mineral 
prospectivity throughout the surveyed region.

4.4. Fuzzy gamma operator

Zadeh (1965) introduced the fuzzy set theory which differs from Boolean set theory as it 
allows objects in a set to have varying degrees of membership instead of strict categorisation. 
Fuzzy logic operates on a scale from 0 to 1, representing degrees of membership, unlike the binary 
nature of traditional set theory. In fuzzy logic analysis, assigning membership values between 0 
and 1 is essential, as the chosen weights for different factors should align with the extent of 
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Fig. 10 - The mineral prospectivity map resulting from the utilisation of Old TOPSIS (a, b), M-TOPSIS (c, d), and A-TOPSIS 
(e, f) methodologies is presented. The left column illustrates the curve based on fractal computation, while the right 
column showcases the fusion outputs.

membership in a set, which can be influenced by user experience and considerations (Kanungo et 
al., 2009). The fuzzy gamma operator is utilised as an efficient integration technique, allowing for 
adaptability in weighted maps and seamless implementation in the ArcGIS platform. Following 
the assignment of scores to the criteria and indicators (Table 2), the gamma weight of 0.87 was 
determined using a trial-and-error approach in this research. This specific value was selected 
for the MPM integration in the study region. Subsequently, the resulting mineral favourability 
map was categorised into five classes based on a curve obtained from fractal computation, as 
illustrated in Figs. 12a and 12b. This classification offers a detailed depiction of various levels of 
mineral favourability throughout the Sonajil area.
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Fig. 11 - The mineral prospectivity map generated through the application of Old VIKOR (a, b) and Modified VIKOR 
(c, d) methodologies is illustrated. The left column displays the curve based on fractal computation, while the right 
column presents the fusion outputs.

Fig. 12 - The curve based on the fractal computation (a) for generating the MPM by utilising fuzzy gamma operator (b).
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4.5. Fuzzy Ordered Weighted Averaging (FOWA) method

The process of applying FOWA involves sequential stages and modifications, aiming to achieve 
optimal outcomes by utilising the α parameter. This α parameter serves as a degree scale for 
decision-makers to adopt different strategies in MCDM problems (Yager, 1988). Essentially, it 
allows decision-makers to shift from a pessimistic state to an optimistic one.

In the study conducted in the Sonajil region, a total of seven α parameters were tested: 
0.001, 0.1, 0.5, 1, 2, 10, and 1000. These parameters were adjusted based on the assigned 
weights to indicators. The fusion layers obtained from these parameters were, then, classified 
into five classes using a curve derived from fractal computation, as shown in Figs. 13a to 13n. 
This classification provides a detailed insight into the different levels of mineral prospectivity 
in the surveyed region, depending on the α parameter values applied in the FOWA 
method.

4.6. Fuzzy Inference System (FIS)

The FIS stands out as a knowledge-driven technique for MPM (Porwal et al., 2015). It operates 
through four primary steps: fuzzification, rule evaluation, aggregation, and defuzzification 
(Mamdani and Assilian, 1975; Porwal et al., 2015; Barak et al., 2021). The FIS method was utilised 
in this research across four distinct layers, with a tailored algorithm incorporating four criteria 
layers to simplify inferencing rules, ultimately reducing complexity and time consumption (Alaei 
Moghadam et al., 2015). These layers encompassed geology (employing a weighted overlay 
technique with a 70% participation percentage for rock units and 30% for faults within ArcGIS 
10.8 software), geochemistry (merging Cu and Mo using an OR operator), alteration, and 
geophysics (RTP filter). Trapezoidal memberships were selected as fuzzy functions to align with 
the preliminary exploration phase in the Sonajil area, applied to input layers such as geological, 
remote sensing, geochemical and geophysical layers (Mamdani and Assilian, 1975). The process 
of defining fuzzy “if-then” rules is a critical step in FIS fusion techniques. In this study, a total of 
81 “if-then” rules have been carefully established, taking into account the available information 
from the Sonajil area and the conceptual model of porphyry deposits. These rules can be found 
in Table 5 and Fig. 15. Following a similar approach as Barak et al. (2020), the FIS integrated layer 
was created, and the resulting integration was divided into five classes using a curve obtained 
from fractal computation (Figs. 16a and 16b). This classification offers a detailed representation 
of the mineral prospectivity levels in the Sonajil area, based on the FIS technique and the specific 
ruleset developed for this study.

Table 5 - Examples of “if-then” rules in FIS.

	 Rule	 Geology	 Alteration	 Geochemistry	 Geophysics	 Mineral	potential
 1 Poor Poor Poor Poor Very poor
 2 Poor Poor Average Poor Poor
 3 Average Strong Poor Average Average
 4 Poor Average Strong Strong Above average
 5 Strong Strong Strong Average Strong
 6 Strong Strong Strong Strong Very strong
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Fig. 13 - MPMs created by using the FOWA technique for seven values of α. Left column depicts the curve based on 
the fractal computation and the right column depicts the fusion outputs: a-b) α = 0.01, c-d) α = 0.1, e-f) α = 0.5, g-h) 
α = 1, i-j) α = 2, k -l) α = 10, and m-n) α = 100.
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Fig. 13 - continued.

Fig. 14 - Membership 
functions taken 
into account for: a) 
geological factor, 
b) remote sensing 
factor, c) geochemical 
factor, d) magnetics 
factor, and e) output 
factor (MPM).
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Fig. 16 - The mineral prospectivity map generated through the application of the FIS technique: a) the curve based on 
fractal computation, b) the fusion outputs.

Fig. 15 - Simplified processing of “if-then” rules in FIS.

5. Result and discussion

The primary objective of this research is to give priority and identify Cu-Au porphyry deposits 
in the Sonajil region using MPM methods. These methods, widely used in recent mineral 
processing studies, involve combining various data sets from geological, remote sensing, 
geochemistry, and geophysics sources. This integration provides a thorough understanding of 
the mineral potential in the Sonajil area. Various fusion techniques were employed to generate 
MPM maps, encompassing index overlay, Old TOPSIS, M-TOPSIS, A-TOPSIS, Old VIKOR, Modified 
VIKOR, fuzzy gamma operator, FOWA (with different α parameters), and FIS. Different fuzzy 
fusion methods were used to analyse the MPM outcomes (Figs. 9 to 13 and 16), and they 
consistently revealed similar results. These results highlighted the areas with high potential, 
which are mainly linked to Sonajil’s granitoid rocks (quartz monzonite-granite-granodiorite) and 
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Sonajil andesite porphyry. These rock formations are known to be the primary hosts for Cu 
mineralisation.

To evaluate the effectiveness of the methods used, productivity values were calculated by 
multiplying ore grade with ore thickness for all 21 drilled boreholes, using a copper cut-off value 
of 0.2%. The results showed a clear link between higher productivity values in the boreholes and 
the prospectivity values from the MPMs, highlighting the significance of these areas for copper 
mineralisation. Furthermore, linear correlation coefficients (R2) between the productivity values 
of the boreholes and the prospectivity values from MPMs were computed. Notably, FOWA (α 
= 10) showed an agreement of 81%, while FIS exhibited 79% agreement, signifying the highest 
consistency among the applied techniques in the region (Fig. 17). The comparison of R2 values 
for all fusion techniques (Fig. 18) reinforced the prominence of the NE and SW portions of the 
Sonajil area as primary sources of porphyry deposits, particularly evident in the dark blue zones 
in the models created by FOWA (α = 10) and FIS. These findings suggest that the utilisation of 
FOWA (α = 10) and FIS techniques could guide and prioritise further exploration and drilling 
efforts in the identified favourable zones, particularly in the NE and SW regions of the Sonajil 
deposit.

Table 6 - The productivity values of all boreholes assuming a cut-off value of 0.2% of Cu grade.

	 x	 y	 Productivity

 696182 4228889 125.84

 696294 4228709 73.68

 696405 4228777 46.48

 696505 4228845 43.13

 697004 4228934 85.40

 696725 4228842 21.15

 696784 4228860 62.30

 696619 4228757 3.65

 698409 4230184 4.03

 699934 4229985 3.99

 698877 4229961 30.80

 699579 4230335 4.25

 699453 4229779 0.00

 699575 4230800 13.51

 700423 4229875 3.09

 700419 4230738 3.00

 699983 4230425 18.85

 697427 4228946 21.94

 697339 4229180 4.40

 697780 4229748 2.22
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Fig. 17 - The curve of the productivity values of the drilled boreholes versus the MPM values for the prepared MPMs 
of: a) index overlay, b) Old TOPSIS, c) M-TOPSIS, d) A-TOPSIS, e) Old VIKOR, f) Modified VIKOR, g) fuzzy gamma operator, 
and FOWA for different values of: h) α = 0.01, i) α = 0.1, j) α = 0.5, k) α = 1, l) α = 2, m) α = 10, n) α = 100, and o) FIS.
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Fig. 18 - The linear correlation coefficient between the productivity values of the drilled boreholes and MPM values 
for various fuzzy-based techniques applied.

6. Conclusions

The research utilised various fusion techniques such as index overlay, Old TOPSIS, M-TOPSIS, 
A-TOPSIS, Old VIKOR, Modified VIKOR, fuzzy gamma operator, FOWA, and FIS, to assess the 
mineral potential of a Cu-Au porphyry deposit in the Sonajil area. Six indicators were created 
and examined, incorporating fractal-based curves to enhance anomaly zones and classify the 
findings into five zones for improved precision. The precision of the fuzzy fusion techniques was 
confirmed by identifying high potential areas that match with granitoid and andesite porphyry 
units. These findings, supported by geological data, suggest the possible existence of a Cu-Mo 
porphyry deposit in the Sonajil region, as evidenced by information from 21 boreholes utilised 
in the validation process. Within the study area, different fusion methods were utilised, with 
results indicating a 79% agreement for FIS and 81% for FOWA. These results strongly indicate 
the potential of using FIS and FOWA for future exploration, which could aid in identifying Cu-Au 
mineralisation and delineating the geometry in the Sonajil region.
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