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ABSTRACT Measuring effective porosity helps in evaluating the capacity of rock to contain fluid. In 
this paper, we estimated porosity in one of the oil fields in southern Iran. For this purpose, 
we used a well-known method of Support Vector Machine due to its ability to produce 
models with less risk of overfitting and a good generalisation capacity. Considering 
that used data are always contaminated with noise, we combined this method with a 
fuzzy system using membership functions. Different types of membership functions are 
available and they are chosen on the basis of data distribution. Membership functions 
add importance and prioritise data points. Each data point is evaluated with respect to 
the whole data and receives a coefficient between 0 and 1. Data points with coefficient 
closer to zero have a lower priority in the algorithm and data points with coefficient closer 
to one have a higher priority and are more important in the algorithm. To compare the 
fuzzy system effect, the coefficient of determination is calculated for the model including 
noise. A lower priority is attributed to random noise in data with respect to normal data. 
The result shows that using fuzzy systems notably improves the robustness of a model in 
the presence of noise.

Key words: porosity, Support Vector Machine, Fuzzy Support Vector Machine, noise, coefficient of 
 determination.
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1. Introduction

Petrophysical parameters play an important role in the evaluation of hydrocarbon reservoirs. 
Over the last decades, the application of artificial intelligence (AI) methods has become popular 
in assessing reservoirs. Machine Learning (ML) is a subdivision of AI that gives computers the 
ability to learn, tries to find a pattern among data sets and to address such patterns for all the 
data.

ML has been widely used by various authors over recent years (Rezaee et al., 2008; Al-Anazi and 
Gates, 2012; Teixeira and Secchi, 2019; Mohamed et al., 2020), to evaluate reservoir parameters. 
Bagheri and Riahi (2015) used facies analysis and seismic data for reservoir modelling, while 
Bagheri et al. (2013) and Saputro et al. (2016) used Artificial Neural Network (ANN) to estimate 
porosity. Rafik and Kamel (2016) predicted porosity by means of both nonparametric regression 
and an ANN method. Sinaga et al. (2019) predicted porosity by integrating an ANN and seismic 
attributes. Huang et al. (2021) used Support Vector Regression (SVR) based on particle swarm 
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optimisation (PSO) to estimate the recovery rate of reservoirs in complicated geological areas.
The Support Vector Machine (SVM), introduced at first by Vapnik (1995), is used for both 

Support Vector Classification (SVC) and SVR. The SVM is based on structural risk minimisation 
(SRM). In algorithms functioning on the basis of SRMs, empirical errors and Vapnik-Chervonenkis 
(C) confidence intervals are both minimised (Vapnik, 1982, 1995). Compared to models based on 
empirical risk minimisation (ERM), models based on SRM overcome the problem of overfitting 
and have better generalisation properties (Al Anazi and Gates 2012). In ERM algorithms, the 
training data errors are minimised and the model depends highly on training data distribution.

The SVM classification algorithm calculates a line (or hyperplane in the case of higher 
dimensions) that maintains the maximum distance between two classes. For this reason, the line 
with the maximum distance relates to the SVM concept (Fig. 1a). For the purpose of regression, 
the SVM concerns data points overlaid by a tube with radius of epsilon. Some of the data points 
are located inside the tube, some are on the tube while others are outside it. The SVR algorithm 
aims to estimate a function inside and alongside of the tube, with a maximum distance from the 
tube (Fig. 1b).

In the SVM, the distance of the data points outside the tube is penalised by the use of the 
epsilon-insensitive loss function (Fig. 2). Three main factors affect the accuracy and precision of 
the SVM model in regression: the tube radius, C parameter, and kernel function. The C parameter 
is a factor that deals with the complexity of the model and the amount of error attributed to data 
points outside the tube. Kernel functions, instead, enable distributing data points in a space of 
higher dimension, where the classification or regression problem can be solved more easily.

Fig. 1 - Application of a SVM for classification (a) and 
regression (b).

Fig. 2 - Illustration of three loss 
functions: a) the Huber loss 
function (black dotted line), 
b) the L1 norm or Laplace, 
and c) the ε-insensitive loss 
function.
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In this paper, the SVM is used for the purpose of regression. The reason for using the ML 
method in this paper is that porosity should be estimated for a hydrocarbon zone and, obviously, 
the best method to find reservoir properties is to use core data. However, core data are not 
always available and are usually expensive. In addition, estimating properties from well log data 
is condition-based and not always accurate. Therefore, to overcome these problems, the SVM 
was utilised as it is suitable for the volume of data of this study and for the advantages it brings 
compared to other methods (it is SRM-based instead of ERM-based). Accordingly, we modelled 
a function to predict porosity for the area, so as to use it to estimate reservoir porosity for areas 
with limited core data availability.

Various works have been done so far on SVMs for modelling hydrocarbon reservoirs. For 
example, Basak et al. (2007) compared the SVM with the ANN to verify how these two different 
approaches reach a global minimum. Al Anazi and Gates (2012) showed how SVR is capable of 
predicting reservoir parameters with a small sample size of training data. Gholami et al. (2012) 
compared the SVM with the regression neural network (RNN) for permeability prediction and 
found that a SVM is more accurate and faster than an RNN. Bagheri and Rezaei (2019) estimated 
permeability using radial basis functions. Moosavi et al. (2023a) predicted permeability using 
electro-facies logs on input data to be used in a fuzzy SVR algorithm to estimate permeability, 
and, in fact, Moosavi et al. (2023b) predicted water saturation using the fuzzy SVR method. Yin et 
al. (2020) used the SVM and PSO to model reservoirs with highly dispersed physical properties. 
Moosavi et al. (2022) compared the fuzzy C means with the fuzzy SVR to estimate porosity from 
noisy data.

In this paper, to estimate a better porosity model for the whole area, the effect of three very 
important parameters, which required proper selecting to notably improve the model, were 
investigated. The authors worked on SVR parameter tuning and selection (Villmann et al., 2015; 
Wang and Xu, 2017). The way in which these parameters affect the model, whether by improving 
or deteriorating it, is evaluated in this paper.

Ultimately, worthy of mention is the fact that noise is an unseparated part of data. Data 
processing removes only a part of noise as some noise still remains, even after processing. By 
using membership functions, a fuzzy system was applied on data to overcome the noise problem. 
The robustness of the algorithm was checked before and after applying the fuzzy system against 
noise. The results prove the superiority of the fuzzy SVM compared to the SVM.

2. Methodology

2.1. Support Vector Machine (SVM)

The SVM can be used for solving both SVC and SVR problems. To understand SVC, we can 
imagine two label classes as shown in Fig. 1. There are, certainly, many lines that can separate 
these two groups from each other. The SVM classifies two groups of data based on the maximum 
distance from the line separating the data into two groups (Gunn, 1998). The data points of each 
class closest to the other class are called support vectors (Smola and Scholkopf, 1998), and are 
indicated in pink and green diamonds on the green and pink lines in Fig. 1a. In the figure, the 
black line (w×x - b = 0) is the SVM classifier that keeps the greatest distance between class 1 
(pink diamonds) and class 2 (green diamonds). The pink and green lines representing the passing 
support vectors of each group are given by (w×x - b = 1) and (w×x - b = -1), respectively, where 
w is the normal vector (the black line). The distance between the support vectors is equal to
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 and becomes maximum when ||w|| is minimum (Vapnik, 1995). A data set, with training data

xn with N observations and response observed values yn, is described as follows:

(1)

Minimising ||w|| leads to the minimisation of wTw:

(2)

To minimise wTw, the following equation must be solved:

(3)

where ai are the Lagrangian coefficients. The purpose is to find the saddle point of (w0, b0, a0). 
After solving the problem, the line or hyperplane can be obtained as below (Suykens et al., 2002):

(4)

Concerning the solving of regression problems with SVM algorithms, at this point, a tube with 
radius of ε located on the data points should be taken into consideration. Some of the data are 
located inside or on the tube, while the rest are located outside the tube (Fig. 1b). Data points 
inside the tube receive no penalty (blue circles in Fig. 1b), but data outside the tube receive a 
penalty, which is proportional to their distance from the tube (orange circles out of the tube 
in Fig. 1b). The farther from the tube, the larger the penalty received. The SVM tries to find a 
function, which minimises the penalty of data points outside of the ε-tube and also to maximise 
the distance between the function and the ε-tube (Fig. 1b, where ξ, ξ*are the penalty of data 
points and also the distance between the black and green dotted lines to be maximised).

To apply penalty to slack variables (ξ), various loss functions can be used. These loss functions 
are displayed in Fig. 2. The Huber loss function is indicated in Fig. 2a with a black dotted line. Fig. 
2b shows the Laplace or L1 norm, which is less sensitive to outliers compared to Fig. 2a. Fig. 2c 
shows the E-insensitive loss function, which promotes sparsity in a greater manner than the two 
other functions (Rustam et al., 2019). The E-insensitive loss function assigns no penalty to data 
points, which are inside the ε-tube (the orange area in Fig. 2c), but data points located out of the 
E-tube receive a penalty value.

The SVM implementation in this study applies the Vapnik E-insensitivity loss function to 
penalise the data points outside the tube (Vapnik, 1995). The formula below describes how slack 
variables receive penalty:

(5)
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If the predicted value is within the tube the loss is zero. Conversely, if the predicted value is 
outside the tube, the loss is given by the difference between the predicted value and the tube 
radius.

Consequently, the optimisation problem for SVR is the following:

(6)

subjected to:

(7) 

where C creates a balance between model complexity and slack variables associated to data 
falling outside the tube, which must be minimised (empirical risk). Lagrangian multipliers αi and 
αi

*
  are obtained by solving the dual optimisation problem, as here following:
maximise:

(8)

subject to:

(9)

where αI and αi
* are positive Lagrange multipliers. Consequently f(x) and w for the SVR model is 

calculated with:

(10)

(11) 

Kernel functions are the third parameters affecting SVR models. A kernel helps in the 
application of linear classifiers to non-linear problems by mapping non-linear data to a higher 
dimensional space. In addition, in case of regression problems, a kernel helps to find a function 
that better fits the data by mapping the data in higher dimensional space (Gunn, 1998). Fig. 3 
shows how data are transferred to higher dimensions to be linearly classified with the help of 
kernels.
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Fig. 3 - Illustration of data transformed into 
higher dimensions using the kernel trick.

2.2. Fuzzy Support Vector Regression (SVR)

Measured core data and well logs used as the input of SVR models contain noise that can 
affect the output of the SVR model. To find a solution for this problem, SVR is modified to fuzzy 
SVR, which can control the amount of noise in data much better than SVR (Bishop, 2006). Fuzzy 
SVR applies membership functions on data points so that every data point receives a degree of 
membership. In this way, every data point has a contribution on the output model (Rustam et al., 
2019). In this case, noise and outliers receive a lower degree of membership compared to other 
data points. For this reason, reducing the effect of noise on the model may be helpful.

Fuzzy membership degree is indicated with Si for data points and (1 - Si) for noisy data. The 
fuzzy concept was first introduced by Zadeh (1965). Following his paper, we transferred data 
points to a [0, 1] interval to normalise them. We, then, found the normalised data average. Data 
points identified by numbers bigger than the average are called X+ and are class 1 with label +1 
(yi = +1), and data points labelled by numbers smaller than the average are called X-, and are class 
2 with label -1 (yi = -1) (Lin and Wang, 2002). Si is defined as follows:

(12)

r+ and r- are as follows:

(13)

(14)

Therefore, to modify SVR to fuzzy SVR, each data point is multiplied by Si and the new data set 
becomes the new input for the SVR algorithm.

3. Application

3.1. Geology of the region

The mentioned methodology was tested on real data field. The Belal oil field is located in the 
central Persian Gulf, 80 km SE of Lavan Island and 40 km SE of the South Pars oil field, adjacent 
to the Qatar-Iran border (Fig. 4). Three well sets were drilled in 1972 and 1973 in this area, 
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Fig. 4 - Map of the Belal oil field located in the Persian Gulf. Hamun, Iris, South Pars, and Baneh are oil and gas fields 
in the region.

leading to the discovery of this oil field with three main hydrocarbon intervals. The Arab-Hith 
formation is the main reservoir in this area, the upper Dalan-Kangan formation has the second 
priority and Sarvak-Darian has the third rank in the Belal oil field (Esrafili-Dizaji and Rahimpour-
Bonab, 2013). The Arab-Hith formation in this area mainly consists of dolomite, anhydrite, and 
limestone. For this study, the authors were granted access to two well sets and their associated 
core data.

3.2. Input data for the SVR algorithm

In this paper, four well logs were chosen to estimate porosity. The log curves included acoustic 
sonic log (DT) neutron porosity (NPHI), gamma ray (GR), and bulk density (RHOB). Fig. 5a displays 
the four logs over the reservoir area. Fig. 5b displays the core porosity, which will be used as 
output data for the SVR algorithm. The reason for choosing these four well log curves is that they 
are closely related to porosity, and, as a result, the porosity parameter can be predicted from 
these logs. Other well logs are less important in calculating porosity, and, if they are chosen as 
input data, there is no certainty that they will improve the results (Karimian et al., 2013).

4. Discussion and results

To predict porosity, four well logs related to two well sets were used in this study. The authors 
were also given access to the porosity core data of two well sets to use them for the test and 
validation operation. The data used in this paper are from two well sets located at different 
vertical depths. The data of the first well are from shallower depths, while the data of the second 
are from deeper depths. Data from the first well were used to train the fuzzy SRM predictor. 
The result was, then, used to predict porosity from the four logs on the second well, and the 
prediction was compared with the field porosity measurements.

After creating the model, the authors check how the SVR parameters affect the result. For this 
purpose, different amounts of tube radius ε, C, and kernels are evaluated, consecutively. A small 
C parameter means that more data points are located on the margin, which is wider. Conversely, 
a large C parameter means that fewer support vectors are included within the margin, thus 
the margin is narrower. As a result, as C increases, the model becomes more complex, with a 
higher risk of overfitting. With an increase of C from 1 to 1,000, the number of support vectors 
also increases from 53 to 73, as shown in Fig. 6. In this case, a penalty is applied to each data 
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Fig. 5 - Illustration of well logs 
and core data for porosity 
estimation used with the SVR 
algorithm: a) GR (red), DT 
(green), NPHI (brown) and 
RHOB (blue); b) core porosity 
(black) as output data.

point located outside the tube. Therefore, as C increases, the accuracy of the model increases 
between the core data (black line) and the model (red line). However, there is a risk of overfitting 
that must be considered.

Another factor that determines the tube radius, necessary in finding the regression function, is 
ε. Data which are located inside the tube receive no penalty and are considered as training data. As 
Fig. 7 shows, the increase of ε from 0.01 to 0.05 decreases the number of data points falling outside 
the tube from 127 to 45. In this case, the precision of the model decreases and, consequently, a 
notable mismatch between core data (black line) and model (red line) is observable.

Fig. 6 - Evaluation of the 
box-constraint effect on the 
model: a) C = 1, number of 
accessible support vectors 
is 53, and coefficient of 
determination (CD) = 
81%; b) C = 1000, number 
of support vectors has 
increased to 73. The 
increase of C has produced 
a better model (right panel) 
with CD = 89%.
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Fig. 7 - Influence of tube 
radius e on the model: 
a) ε = 0.01, number of 
accessible support vectors 
in the model is 127, and 
CD = 87%; b) ε = 0.05, 
number of support vectors 
included in the model is 
45, and CD = 67%. The 
black curve represents the 
core porosity and the right 
curve shows the predicted 
porosity from SVR.

The last factor is the kernel function. Based on data distribution, an appropriate kernel can 
increase data separation and fit data more properly. Fig. 8 compares two different kernel functions 
on the data: a) a Gaussian kernel and b) a polynomial. As the results show, a cubic polynomial 
kernel with degree 3 fits the data more appropriately when compared to a Gaussian kernel.

The selection of appropriate parameters plays a fundamental role in the accuracy of the 
model. Three well-known methods are available for choosing the optimal SVR parameters, such 
as grid search (Hsu et al., 2003), gradient descent (Keerthi et al., 2007), and meta-heuristics 
algorithms (Blum and Roli, 2003; Talbi, 2009).

In this work, the grid search method, where data are partitioned into two complementary 
sets, was used. The first set is used for SVR training, and the second for validating SVR prediction. 
Data training and validation is repeated K times. K is called fold and can be chosen as an optional 

Fig. 8 - Evaluation of two 
different kernel functions 
on the model: a) Gaussian 
type kernel with CD = 83%; 
b) polynomial type kernel 
(cubic polynomial type, 
degree 3) with CD = 88%. 
For the current data of 
this study, the polynomial 
kernel shows a better 
result.
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Table 1 - Summary of mathematical expressions.

  Mean square error

  Mean absolute error

  Root mean square error

number by the user. In each step, the coefficient of determination (CD) is calculated for the models 
obtained from training and validation data. Then, the best data training and test percentage will 
be obtained in this part. The CD is a number between 0 and 1 that measures how well a statistical 
model predicts the outcome. The CD is calculated as expressed below:

(15)

where RSS the residual sum of squares and TSS the total sum of squares.
The next step consists in individually calculating, for each kernel function, different error 

statistics such as the MSE (mean square error), MAE (mean absolute error), and RMSE (root 
mean square error) that measure the accuracy and precision of the model. The MSE measures 
the average of the square errors, that is the average squared difference between the estimated 
value and the actual value. The MAE is measured as the average of the absolute error values. 
The RMSE measures the difference between values predicted by a model and values observed. 
Formulae for error statistics are reported in Table 1. The use of kernels with less error statistics 
is recommended. Table 2 displays the results. According to Table 2, for SVR, the MSE, MAE, 
and RMSE, measured for a coarse Gaussian kernel function, are 0.0014, 0.0299, and 0.0383, 
respectively. For fuzzy SVR, the quadratic kernel is the most appropriate with MSE, MAE, and 
RMSE values of 0.00111, 0.212 and 0.033, respectively.

Table 2 - Data summary for statistical error measurements for different kernel functions.

  SVR

 Kernel type MSE MAE RMSE

 Linear 0.0014 0.029 0.039446

 Quadratic 0.0015 0.029 0.039267

 Cubic 0.0018 0.031 0.04265

 Medium Gaussian 0.0015 0.0303 0.0397

 Coarse Gaussian 0.0014 0.0299 0.0383

  Fuzzy SVR

 Kernel type MSE MAE RMSE

 Linear 0.00165 0.0235 0.0407

 Quadratic 0.00111 0.0212 0.033

 Cubic 0.00135 0.0223 0.036

 Medium Gaussian 0.0012 0.0229 0.0357

 Coarse Gaussian 0.0015 0.027 0.0398
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Scatter plots of predicted porosity versus core porosity, using linear kernels, are displayed 
in Fig. 9 for both SVR and fuzzy SVR. In the second column, the plot shows that data are more 
concentrated around the 45° line in the fuzzy SVR compared to the SVR model. It can be concluded 
that better results are obtained from the fuzzy SVR. The CD for SVR with core data is 81% while 
CD for fuzzy SVR is 92%.

Fig. 9 - Scatter plot of 
predicted porosity versus 
core porosity using linear 
kernels. The CD for SVR is 
81% and for fuzzy SVR is 
92%.

In the final step, to reduce the effect of noise and outliers on data, the membership function 
is applied on data, so each data point receives a membership degree to be engaged in the fuzzy 
SVR algorithm. Fig. 10 shows the models obtained from SVR and fuzzy SVR. The results show that 
the CD between core porosity and the SVR model is 79%, while the CD between core porosity 
and fuzzy SVR model is about 90%.

Fig. 10 - Predicted porosity 
from: a) SVR and b) 
fuzzy SVR. Core data are 
indicated with a black line 
and predicted porosity 
with a red dotted line.
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4.1. Effectiveness of the fuzzy SVR model in the presence of noise in data 

To evaluate the effectiveness of the fuzzy SVR model, random noise, equal to 0.5 times the 
absolute value of the signal amplitude, was added to the training data. Here, the signal is the 
input data or the well logs. Noise is added to well logs and training data and is not added to the 
test data or core data. Moosavi et al. (2022) explains the amount of random noise that can be 
added to training data and the amount of random noise that deteriorates SVR or fuzzy SVR. In 
this paper, the CD is calculated for different ranges of random noise using the means of their 
distribution graphs.

In the next step, both SVR and fuzzy SVR were applied on the noisy data. Fig. 10 shows the 
results: a) the SVR model (red dotted line) versus core data (black line) and b) the fuzzy SVR 
model (red dotted line) versus core data (black line). Fig. 11 shows that fuzzy SVR is more robust 
against noise compared to SVR. The figure also shows how the SVR model has deteriorated in 
the presence of noise. To understand the numerical difference, the CD was calculated for both 
models and resulted 69% for SVR and 88% for fuzzy SVR. As discussed earlier, the CD calculated 
for SVR and fuzzy SVR without the addition of artificial noise was 79% and 90%, respectively.

Fig. 11 - Comparison 
between SVR and fuzzy SVR 
in the presence of artificial 
noise in the data: a) the 
SVR model (red dotted line) 
and core data (black line); 
b) the fuzzy SVR model (red 
dotted line) and core data 
(black line).

Based on the results in Fig 11. and the calculated CD, it is clear how the fuzzy SVR is powerful 
in the presence of noise in data in comparison to conventional SVR. In this paper, different levels 
of noise have been added to data. In the presence of a high level of noise in the data, the fuzzy 
SVR remains robust and the calculated CD does not change very much. Conversely, when the 
amount of noise in the data increases, the correlation between the SVR prediction result and 
core data falls dramatically. The main advantage, for this reason, of the fuzzy SVR method is its 
application for noise suppression in data.

5. Conclusions

In this paper, we utilised SVR to predict a porosity model on real data of an oil field in southern 
Iran. Initially, the effects of three parameters on the SVR model were investigated. The results 
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showed how these three parameters can improve or deteriorate the model obtained. Next, we 
calculated error statistics using different kernels for both SVR and fuzzy SVR, and, then, found the 
most appropriate kernel for both algorithms. Ultimately, since the presence of noise is inevitable 
in geophysical data, we modified the SVR to fuzzy SVR by applying membership functions on the 
data, so that each data point has a contribution on the model by receiving a membership degree. 
On calculating the CD for both fuzzy SVR and SVR versus core data, the results proved that fuzzy 
SVR is more effective in suppressing the influence of noise on data compared to SVR.
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