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ABSTRACT	 Volcanic regions can be characterised by different unrest phenomena and secondary 
volcanism. Several studies link these phenomena to both magma and hydrothermal 
fluids. For instance, in the case of the widely studied Campi Flegrei caldera, recent 
literature suggests that thermo-poro-elastic (TPE) inclusion models are suitable to 
describe both the observed deformation and seismicity that often accompany its unrest 
episodes. Some recent works propose analytical solutions to model the case of a thin 
disc-shaped inclusion, i.e. with a thickness much smaller than its radius. As this restriction 
may be critical, TPE inclusion models were subsequently extended to cylindrical-shaped 
inclusions, with an arbitrary thickness, by representing them as a superposition of 
several thin disc-shaped inclusions (elements). In this paper, we demonstrate how to 
estimate the minimum number of elements to represent both displacement and stress 
fields caused by cylindrical TPE inclusions with an arbitrary aspect-ratio (thickness over 
radius). For aspect ratios greater than 0.3, a single element model will no longer prove 
suitable to represent both displacement and stress with a good accuracy.
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1. Introduction

The study of deformation sources in volcanic and hydrothermal areas is a very interesting 
topic, which has been widely discussed in the past and in recent literature (e.g. Bonafede et 
al., 2022 and references therein). For example, Campi Flegrei is a restless caldera in a densely 
populated area, with a complex hydrothermal system, and a long historical activity record. The 
uplift and subsidence (bradyseism) phenomena have been known since the Roman period, for 
which variations between 1 to 10 m have been estimated. Significant uplift occurred between 
1950 and 1985 (about 4 m). In the 1982-1984 period, the centre of the caldera was uplifted by 1.8 
m (Belardinelli et al., 2011; Trasatti et al., 2011). At the same time, a series of earthquakes, with 
magnitudes up to ML 4.2, was recorded. This episode was followed by about 1 m of subsidence 
between 1985 and 2000 (Del Gaudio et al., 2010). As shown in Fig. 1b, a new uplift phase started 
in 2005, and continues to this day.

Today, the Campi Flegrei caldera is characterised by an intense hydrothermal activity, which, 
as such, represents a suitable study area to understand and apply different deformation source 
models. The driving force behind the ground deformation at Campi Flegrei is still a matter of 
debate. So far, various models have been evaluated, including the intrusion of new magma and/or 
hydrothermal circulation (De Vivo et al., 2020). Recent literature agrees that ground deformation 
and seismicity are often connected to fumarole and hydrothermal activities (Chiodini et al., 
2021).

© 2024 - The Author(s)
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The displacement, deformation and stress fields in volcanic and hydrothermal areas can 
be modelled using deformation sources under different assumptions. Some of the most used 
deformation sources are described by Mogi (1958), Yang et al. (1988), and Fialko et al. (2001). 
The first two models represent magma filled pressurised cavities, while the third is suitable 
to describe circular and horizontal cracks. Purely magmatic models do not explain long-term 
subsidence (Troise et al., 2018). Moreover, a null deviatoric stress is present inside this kind of 
source, thus preventing the occurrence of seismicity in the source interior. Furthermore, the 
presence of large magmatic bodies, at depths of a few kilometres, is in contrast with experimental 
evidence obtained by soil drilling at Campi Flegrei (Judenherc and Zollo, 2004), which excludes 
the presence of magma at shallow depths (≤ 2 km). In addition, many studies concerning the 
Campi Flegrei unrest episodes have established, in recent years, that it is important to consider 
the effects of hydrothermal fluid migration (e.g. Bonafede, 1990; Lima et al. 2009; D’Auria et 
al., 2014; Chiodini et al., 2015). Therefore, to model the ground displacement observed at the 
caldera of Campi Flegrei, the effects of its hydrothermal system (e.g. Todesco et al., 2014; Nespoli 
et al., 2021), superimposable to the ones of possible magmatic sources, cannot be neglected.

The thermo-poro-elastic (TPE) inclusion models represent the case where changes of pore 
pressure, Δp, and temperature, ΔT, occur within a volume of limited extent, filled with a porous 

Fig. 1 - Map of the Campi Flegrei area, near Naples in Italy (a) and time series of vertical uplifts (b) measured with 
levelling at the benchmark 25A [red curve: Del Gaudio et al. (2010)] and at the CGPS RITE station [black curve: De 
Martino et al. (2021)]. Both the benchmark and RITE station are located in Pozzuoli.



151

How to model thick thermo-poro-elastic inclusions	 Bull. Geoph. Ocean., 65, 149-164

and permeable material (Fig. 2a). The changes in p and T produce deformation (and stress) 
in the surrounding medium (matrix), hence it is possible to refer to the TPE inclusion also in 
terms of deformation source. The matrix is assumed to be in isothermal and drained conditions 
[Δp = 0, ΔT = 0; e.g. Wang (2001)]. Differently from pressurised cavity models, the TPE sources 
provide high deviatoric stress values within the source itself and can, therefore, justify the 
presence of earthquakes within them (e.g. Mantiloni et al., 2020). For example, at Campi Flegrei, 
the tomography of Calò and Tramelli (2018) suggests the existence of a rock layer with a thickness 
of about 500 m at a depth of about 2-3 km, likely placed above a deeper magmatic source (e.g. 
Nespoli et al., 2021; Buono et al., 2022) and below the shallow aquifer. Such a layer is subjected 
to changes in temperature and pore pressure due to the infiltration of the fluids released from 
the deeper magma reservoir (Fig. 2a). According to the geodetic data inversion performed by 
Nespoli et al. (2021), the deformation of the 1982-1984 unrest can be well reproduced employing 
a cylindrical TPE inclusion, located at a depth of about 2 km, with a radius of about 2.5 km and 
thickness of 500 m.

Fig. 2 - Representation of the hydrothermal system beneath the city of Pozzuoli (a). The magmatic fluids are released 
by a deep magma chamber; hot and pressurised fluids (red arrows) cross the rock layer through its permeable 
part (yellow). The fluids can, then, reach the surface through the shallow aquifers. Cylindrical TPE source model of 
thickness d and radius a embedded into a half-space (b). The TPE inclusion is modelled by superimposing N discs of 
equal thickness. Coordinate r is the distance of the field point (blue dotted lines) from the centre of each of the discs 
(red dots). Since for the same field point this distance depends on the disc, in panel b, r = rm is indicated as the distance 
of the field point from the centre of the m-th disc.
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Recent literature proposes different approaches to model the mechanical effects of TPE 
inclusions. Some authors have used a numerical approach (e.g. Nespoli et al., 2021 and 2022), 
others analytical or semi-analytical approaches (Mantiloni et al., 2020; Belardinelli et al., 2022). 
While numerical methods allow for greater versatility in the geometrical representation of TPE 
inclusions, analytical methods are also very important, as they provide a starting point for more 
complex numerical models. In particular, each numerical model should be previously tested 
by comparing it with the analytical solutions available. One of the limitations of the analytical 
solutions, provided by Mantiloni et al. (2020) and Belardinelli et al. (2022), is that the geometry 
of the TPE inclusions is restricted to the case of a thin disc, i.e. with a thickness much smaller 
than its radius. This restriction may not be valid for all kinds of geophysical applications. 
However, Nespoli et al. (2021) proved that this limitation can be bypassed by representing a 
thick (cylindrical) TPE inclusion as a superposition (Fig. 2b) of thin TPE discs, as guaranteed by 
the unicity of the solution and continuity of the tractions over the TPE inclusion boundaries. 
It is, therefore, reasonable to assume that the greater the number of discs, the better the 
representation of the cylindrical TPE source model. However, to date there is still no study that 
addresses the problem in a quantitative way. Providing an answer to this problem may extend 
the applicability of the TPE sources.

For this reason, the aim of the present paper is to evaluate the minimum number of discs, N*, 
suitable to model the displacement and stress field caused by a TPE cylindrical source with finite 
thickness, d, and radius, a. The inclusion is realised by overlapping disc-shaped TPE elements 
(discretised model) with the same radius and a thickness equal to a fraction of d.

The following paragraphs describe: the methodology used to calculate stress and displacement 
for the discretised model, and how to evaluate N* and the maximum aspect ratio, d/a, that a 
TPE cylinder can have in order to be represented using only one element, also known as the ‘disc 
solution’.

2. Methodology

2.1. Constitutive relationships for disc-shaped TPE inclusion in a half-space

To compute the displacement and stress fields generated by a TPE source, we started from 
the constitutive equation of a TPE medium expressing strain, , as a function of stress, τij (Biot, 
1941; McTigue, 1986; Rice and Cleary, 1999). If a medium undergoing a temperature variation, ΔT, 
and a pore pressure variation, Δp, is considered, the following constitutive equation is obtained:

(1)

where:

(2)

and K =  is the bulk modulus, 1/H is the poro-elastic expansion coefficient as defined
by Biot (1941), μ is the medium rigidity, υ is the Poisson modulus, α is the thermal expansion 
coefficient.
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A TPE region subjected to ΔT and Δp, confined within a closed volume VS, defines a TPE 
inclusion, which can be modelled by generalising the method described by Eshelby (1957) and 
later, also, by Aki and Richards (1980). According to Belardinelli et al. (2019) a TPE inclusion located 
in a poro-elastic half-space, in drained and isothermal conditions, generates a displacement that 
can be expressed as follows:

(3)

where , called ‘TPE inclusion potency’, is defined in Eq. 2 and Gik is the Green’s tensor for an 
elastic half-space. The latter enables evaluating displacement in the i-th direction at x (receiver 
point), generated by a unitary force acting in the k-th direction located at x’ (source point). From 
the displacement field, the strain field can be computed as:

(4)

and the stress field (e.g. Mantiloni et al., 2020) as:

            if the stress is calculated inside the source,	 (5)

             if the stress is calculated outside the source.	 (6)

In the case of a TPE disc with thickness d and radius a, the displacement (as well as the strain 
and stress) can be expressed as the sum of a non-singular part, uns (Mantiloni et al., 2020), and a 
singular part, us (Belardinelli et al., 2022), with the singularity being in r = a (Fig. 2b):

(7)

(8)

                      if the stress is calculated inside the source	 (9)

            if the stress is calculated outside the source. 	 (10)

Here following, only the displacement component, ux = u1 and uz = u3, and the non-vanishing 
stress components, in x2= 0, τxx = τ11, τyy = τ22, τzz = τ33, τxz = τ13 (Mantiloni et al., 2020), will be considered.

2.2. Discretised cylinder model

Assuming that the TPE source is a cylinder with a finite thickness, it can be discretised in 
thin discs, called elements, with thickness de = d/N and aligned along the z-axis (Fig. 2b). In the 
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model, an odd number of discs will be considered since the central element is positioned along 
the median plane of the TPE source and centred in z = c. Next, the centre of the other elements 
is shifted by m(d/N), where m represents the m-th disc above (m > 0) or below (m < 0) the central 
disc (numbered with m = 0).

Using Eqs. 7 to 10, it is possible to calculate the displacement and stress field of each of the 
cylinder elements under the assumption de/a << 1 and considering the centre of each disc to be 
at a depth of c(m) = c + m·de, m = -(N-1)/2, …, 0, …, (N-1)/2.

To reproduce the overall displacement and stress fields of the discretised cylinder, the 
contribution of each element is summed:

(11)

(12)

where τij
(m) is:

(13)

(14)

.              (15)

2.3. Discretisation criteria depending on thickness

In this section, the criteria used to find the minimum number of elements, N*, suitable to 
represent the displacement and stress fields for a cylindrical TPE inclusion, are discussed. To 
understand how well the disc solution of Mantiloni et al. (2020) can represent a TPE cylinder 
with finite thickness, the difference between a component of the displacement generated by a 
discretised model with N elements, u(N), and one with only one element, u(1), is estimated using 
the Root Mean Square Error, RMSE (e.g. Despotovic et al., 2016):

(16)

where displacements are evaluated at the point (xk, z), and P = 193 represents the number of 
points considered on the x-axis in the interval 0 < x/a < 2, with the cylinder axis being located in 
x = 0.

Assuming the existence of a minimum number of elements, Nu*, such that the addition of 
further elements does not entail significant variations in the displacement field, the following 
discretisation criterion is used to denote Nu*:
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(17)

For the present application, ∈u = 7×10-3 m is chosen, and this choice will be discussed in section 
5. Nu* depends on depth of the field point, z, and on the displacement component. Ultimately, 
the maximum value obtained for Nu*(z) is chosen among all displacement components to 
represent the appropriate number of elements with which the displacement, due to a cylinder 
TPE source of thickness d, can be modelled.

Attention should be drawn to the fact that all points falling within the following range were 
intentionally excluded from the calculation of RN:

(18)

as the displacement field is singular in r = a. This arbitrary choice is made to limit the effect of 
the singularity on the estimate of Nu*. Besides this, within the interval in Eq. 18, the convergence 
requires caution in evaluating the singular part of displacement, as shown in Fig. A1 of Belardinelli 
et al. (2022).

Similarly, the equations to compute the RMSE for a stress component τ are:

(19)

and

(20)

where ∈S = 7×10-4 Pa. Once more, the points within the interval given in Eq. 18 were excluded 
from the calculation of SN as the stress components have a singularity in r = a. Eventually, NS* was 
chosen as the maximum value of NS*(z), among all stress components.

3. Study cases

The mechanical effects induced in two cases assuming different aspect ratios for the 
inclusions, were compared. In both cases, cylinders, with a centre located at a depth of c = 3000 
m and radius of a = 500 m, were taken into consideration. In the first case (C1), a thickness of d 
= 50 m, with an aspect-ratio of d/a = 0.1, was assumed, while in the second case (C2), d = 500 m, 
with a greater aspect-ratio d/a = 1, was assumed. The effects of considering a different number 
of elements (N = 1 to 21), to discretise the inclusions of C1 and C2, were studied. On the median 
plane of the inclusion (Fig. 2b), the displacement component, u1 was evaluated first of all.

For C1 (Fig. 3a), it can be seen that the differences, Δu1(N), between u1, calculated with 1 
element, and N elements increase in magnitude with N, but quickly reach an asymptotic value 
for N ≥ 5 and are quite low, Δu1 < 0.002 m. In fact, when cylinder C1 is discretised with one, 
three, or five discs, a significant variation is obtained only at the cylinder edge, but moving both 
outwards and towards the source (x ≤ 0.95a and x ≥ 1.05a), the variations are negligible (Fig. 3b).
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The vertical component of displacement, u3, is not shown because the variations, Δu3 (N), 
are in the order of Δu3 = 10-13 m, and can be neglected. The same is true for all the displacement 
components in z = 0 (surface level), where the disc solution is suitable for case C1. It should 
be noted that an inclusion is being modelled with the median plane located at a depth of 
z = c = 3000 m, which is greater than the cylinder thickness and radius; had a source at a shallower 
depth been considered, the effects of discretisation could have been more evident at the surface.

Fig. 3c shows the result obtained for C2. It is evident that the differences, Δu1 (N), are greater 
than those of C1. In fact, Fig. 3c shows that Δu1 (N) ~ 0.2 m for N > 1, i.e. two orders of magnitude 
larger than the one obtained in C1. For C2, the single-element model considerably deviates from 
the discrete solutions (Fig. 3d). It can be observed that, for N = 3 and N = 5, the u1 curves deviate 
from the one with N = 1 by a non-negligible difference (≅ 0.1 m) even at a relatively large distance 
from the boundary of the inclusion.

Fig. 3 - For a cylinder with d = 50 m: a) horizontal displacement represented as a function of N (number of elements) at 
points xin/a = 0.95 (inside the source) and xout/a = 1.05 (outside the source); b) horizontal component of displacement 
as a function of x/a in the cases N = 1, N = 3, and N = 5. For a cylinder with d = 500 m; c) horizontal displacement 
represented as a function of N (number of elements) at points xin/a = 0.95 (inside the source) and xout/a = 1.05 (outside 
the source); d) horizontal component of displacement as a function of x/a in the cases N = 1, N = 3, and N = 5. The 
median plane of the TPE cylinder is located at a depth of z = c = 3000 m.

At this stage, if how the value of stress components varies inside and outside the source as 
a function of the number of elements, N, is considered, then the difference between the N = 1 
model and the N = 3 model for C1 is indicatively in the order of 106–105 Pa, and varies depending 
on the position (inside or outside the source) and on the stress components (Fig. 4a). Similarly 
to the displacement case, all the stress components almost reach an asymptotic value for N > 3. 
In Fig. 4c, the discretisation affects components τ11 and τ33, with a maximum variation value of 
107 Pa, which is close to the singularity at x = a; conversely, for τ22 the effect is much smaller. In 
Fig. 4b, the greatest variations obtained for C2 are encountered for τ11 and τ33 and are ≥ 5×107 Pa, 
while for τ22 they are less than 107 Pa.
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As shown in Fig. 4d, for the C2 case, the components mostly affected by the discretisation are 
τ11 and τ33, with a greater effect than in the C1 case. 

Fig. 4 - For a cylinder with d = 50 m: a) stress components represented as a function of N (number of elements) at 
points xin/a = 0.95 (inside the source) and xout/a = 1.05 (outside the source); b) stress components as a function of x/a 
in the cases N = 1, N = 3, and N = 5. For a cylinder with d = 500 m; c) stress components represented as a function 
of N (number of elements) at points xin/a = 0.95 (inside the source) and xout/a = 1.05 (outside the source); d) stress 
components as a function of x/a in the cases N = 1, N = 3, and N = 5. The median plane of the TPE cylinder is located 
at a depth of z = c = 3000 m.

4. Error estimate using a disc solution

Starting from Eqs. 17 and 20 and the criteria established in the section 2, the study now 
focuses on how Nu* or NS* vary as functions of the thickness, d. Figs. 3a and 3c suggest that 
Nu* corresponds to one element for C1 (d = 50 m), and three elements for C2 (d = 500 m), as 
quantitatively confirmed by results shown in Fig. 5a. In Figs 4a and 4c, particularly for stress 
components τ11 and τ33, the asymptotic values are evidently reached at a greater N, with respect 
to u1, which is confirmed by the greater NS* values displayed in Fig. 5b. As shown in Figs. 5a and 
5b, the discretisation criterion applied to the stress components (Eq. 20), in particular to τ33 and 
τ11, is more restrictive than the one applied to the displacement and requires a larger number of 
elements, NS*, for the same thickness.

Fig. 5c shows how RN changes as a function of inclusion thickness. As mentioned above, the 
vertical component of the displacement provides no significant variation in the discretisation 
of the TPE cylinder and, as a matter of fact, the value calculated for Nu* is always equal to one 
element. For components τ33 and τ11 (up to 107 Pa for d = a = 1), the RMSE, SN, reaches considerably 
higher values compared to those obtained for component τ22 (106 Pa) (Fig. 5). This confirms that 
τ33 and τ11 are more affected by discretisation than τ22, also in agreement with results shown in 
Fig. 4b.
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Given a certain thickness, N* was ultimately chosen as the maximum between NS* and Nu*, 
which consistently is NS*, according to results shown in Figs. 5a and 5b.

Therefore, wanting to represent both displacement and stresses with a precision that is higher 
than a given threshold (∈U = 7×10-3 m, and ∈S = 7×104 Pa, respectively, for this application), it 
is necessary to discretise the cylindrical source of thickness, d, with the number of elements 
reported in Table 1.

Considering the values obtained in Table 1, the number of elements required is extremely low 
for lower aspect ratios, being N* = 3 for d/a < 0.3, and rises as the thickness-radius ratio increases.

From the values in Table 1, the element thickness, de, that must be used to discretise a cylinder 
of thickness d (de = d/N), can be evaluated according to the criterion in Eq. 20. Therefore, it is 
possible to state that the thickness of the discretising elements ranges between 16 and 50 m 
(hence de/a ≤ 0.1).

N*was found to increase with an increasing d, and, therefore, the errors made by representing 
a cylindrical TPE source with a disc solution are also expected to increase at an increasing source 
thickness. Consistently, RN* and SN* (the RMSE functions for displacements and stresses on the 
median plane) increased with an increasing d (cf. Figs. 5c and 5d).

Since both displacement and stress scales with d (cf., e.g. Figs. 3b and 3d or Figs. 4b and 
4d), it may now be advisable to introduce an estimator that evaluates the relative error due to 
a particular choice of discretisation. The average relative error associated with a displacement 
component, u, at the (x, z) coordinate point, evaluated using a disc model u(1) instead of the 
N*-element model u(N), can be evaluated as the Root Mean Square Relative Error, RMSRE (e.g. 
Despotovic et al., 2016):

(21)

Fig. 5 - a) Nu* as a function of thickness (calculated with Eq. 17); b) Ns* as a function of thickness (calculated with 
Eq. 20); c) RN as a function of thickness (calculated with N* = Nu*); d) SN as a function of thickness (calculated with 
N* = Ns*). The median plane of the TPE cylinder is located at a depth of z = c = 3000 m.
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where xk is a point along the horizontal profile at constant z.
Similarly, the RMSRE associated with a stress component evaluated using a disc model τ(1), 

instead of the N*-element model τ(N*), is:

.                      (22)

In both Eqs. 21 and 22, N* represents the maximum value obtained between Nu* and NS*.
In the calculation of the RMSRE, a ring around the cylinder edge is excluded, and it is the 

same ring as the one indicated in the count of RN and SN, to avoid accounting for errors associated 
with the values of stress and displacement close to a singularity.

The results obtained for different values of d are shown in Fig. 6a, for displacement, and 
in Fig. 6b, for stress and summarised in Table 2. The RMSRE increases at the increasing of disc 
thickness, and is smaller for displacement than for stress.

The maximum thickness, dMAX , below which the single disc model is considered acceptable, 
is defined according to the maximum RMSRE value tolerable in this study. A RMSRE significantly 
greater than 30% indicates poor model results (e.g. Podowitz et al., 2014; Torres and Fuertes, 
2021). For instance, if we consider the RMSRE relative to τ33 computed on the median plane of the 
cylinder, we obtain a RMSRE of 31% for dMAX = 150 m (cf. Fig. 6b and Table 2), which corresponds 
to an aspect ratio of d/a = 0.3. Therefore, such value is considered as the maximum acceptable 
aspect ratio for a single element model. The fact that the threshold value, dMAX, depends on the 
error required by the problem being studied must be taken into consideration: the smaller the 
error, the greater the need to discretise cylinders with ever smaller thicknesses.

As a further example, the C2 cylinder source, with a thickness of d = 500 m (d/a = 1), is taken 
into consideration: in Figs. 6c and 6d, the displacement and diagonal stress component obtained 
are shown on the median plane with a single disc model (dashed lines) and a discretised cylinder 
with N* = 11 (solid lines). The average error introduced by the disc model is in the order of 0.5 
cm for the horizontal displacement, and about 1 MPa for stress components τ11 and τ33.

Table 1 - Number N* of elements obtained for τ33 (Fig. 5b) as a function of thickness.

	 Aspect ratio, d/a	 Total inclusion thickness, d (m)	 Number of elements, N*	 de(m)
	 0.1	 50	 3	 16.7
	 0.2	 100	 3	 33.3
	 0.3	 150	 5	 30
	 0.4	 200	 5	 40
	 0.5	 250	 7	 35.7
	 0.6	 300	 7	 42.9
	 0.7	 350	 7	 50
	 0.8	 400	 9	 44.4
	 0.9	 450	 9	 50
	 1	 500	 11	 45.5
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5. Discussion

By comparing the mechanical responses of two TPE cylinders located at the same depth, with 
different aspect ratios, assuming the same radius, a = 500 m, and two different thicknesses of 50 
and 500 m (Figs. 3 and 4), the greatest difference between the effects generated by the single disc 
and discretised cylinder are obtained in the median plane of the source, for stress component τ33. 
For each thickness, d, the minimum number of elements, N*, beyond which RN and SN reached 
a stable value lower than ∈S = 7×10-3 m, for displacement, and ∈S = 7×104 Pa, for stress, was 

Table 2 - Maximum RMSRE(%) committed when using the disc model in place of the discretised model of a cylindrical 
TPE inclusion as a function of thickness. The RMSRE is evaluated for the  component in the median plane of the 
inclusion.

	 Aspect ratio, d/a	 Total inclusion thickness, d (m)	 RMSRE (%)
	 0.1	 50	 5
	 0.2	 100	 16
	 0.3	 150	 31
	 0.4	 200	 45
	 0.5	 250	 63
	 0.6	 300	 80
	 0.7	 350	 96
	 0.8	 400	 120
	 0.9	 450	 140
	 1	 500	 166

Fig. 6 - Percentage error (RMSRE) for displacement, computed with Eq. 21 (a), and for stress, computed with Eq. 22 
(b). Using N = 1 and N = N* = 11, comparison of displacement (c) and stress (d) for a cylinder of thickness d = 500 m. 
The median plane of the TPE cylinder is located at a depth of z = c = 3000 m.
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calculated. Such values were chosen considering that the current precision of InSAR is around 
1 cm and that the vertical component from GPS systems is provided within some millimetres of 
uncertainty, while the modelled stresses in the median plane of the TPE source (Figs. 4c, 4d, 5c, 
5d) are considerably greater than 105 Pa. To be certain that displacement and stress components 
were evaluated within a precision of at least 1 cm and 0.1 MPa, respectively, we chose ∈U and 
∈S to be 30% lower than these values (e.g. with ∈S = 104 Pa it would be necessary to use NS = 15 
elements to represent a cylinder of thickness d = 500 m).

The results indicate that the NS* number depends on the stress component considered. 
In particular, normal stress on horizontal surfaces, τ33, is the component most affected by 
discretisation and requires the maximum number of elements NS*. The maximum thickness, 
de, of the elements used to discretise a cylinder is between 16 and 50 m. Accordingly, elements 
should have aspect ratios smaller than 0.1, where the thickness is one order of magnitude 
smaller than the radius.

This study has also shown that, by using a single disk model, the relative errors on the median 
plane, with respect to a discretised model with N = N*, are consistently below ~30%, for aspect 
ratios lower than 0.3. If, for example, the unrest episode of the Campi Flegrei area dated 1982-
1984 and the geometry of the TPE inclusions used by Mantiloni et al. (2020), with an aspect ratio 
of d/a in the range from 0.1 to 0.3, are considered, the displacement field in the median plane 
is found to be not significantly affected by discretisation. A fortiori, as seen at the beginning of 
section 3, this also applies to the displacement computed at the surface. This result is important 
as it confirms that a single disc TPE model is suitable for geodetic data inversion, and a single disc 
model makes the inversion process much faster.

One of the major limitations of our approach is related to the singularities appearing near 
r = rm = a for the m-th disc element (Fig. 2b). In the worst case faced in this work, a discretised cylinder 
with d = a and a field point located in the median plane (z = c), from geometrical considerations, 
the singularities of all the elements sum up within the interval 0.87 < x/a ≤ 1. To bypass the 
problem within this interval, the truncation order in the expansion of the singular components can 
be increased and/or the solution of each element near the singularities (Belardinelli et al., 2022) 
interpolated, as done in this work. To evaluate the displacement and stress field in any point inside 
a thicker TPE cylinder (d > a), the use of a numerical approach is convenient (Nespoli et al., 2022).

As rather deep TPE inclusions have been considered so far (i.e. located at a depth greater 
than their radius), the results obtained indicate that the discretisation does not significantly 
affect the fields computed on the surface. In the case of shallow TPE inclusions (depth smaller 
than radius a, but larger than thickness d), surface fields would be affected by the singularities 
appearing near r = rm = a and attention should be paid to model them even at z = 0.

The mechanical effects induced by a TPE inclusion are much larger on the inside than on the 
outside, reaching the maximum on the median plane of the cylinder (e.g. Mantiloni et al., 2020; 
Nespoli et al., 2021; Belardinelli et al., 2022). For this reason, the choice of a suitable number of 
elements to represent a thick TPE inclusion should be made considering the mechanical effects 
computed on the median plane of the cylinder. This condition is also valid in the case of shallow 
TPE inclusions (d < c < a).

6. Conclusions

In the present paper, the mechanical responses of two cylindrical TPE inclusions with 
different aspect ratios (thickness over radius) are compared, and the error made in representing 
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the two inclusions with the single disc solution evaluated. In addition, the minimum number 
of disc elements, suitable to represent both inclusions with a given precision, is determined. 
Identifying this number is important in order to ensure that a model is sufficiently accurate to 
be compared with the geophysical observables (e.g. surface displacement), but also to avoid 
using an excessively large number of elements that would lead to an unnecessary increase 
in the calculation time, especially in non-linear inversion processes. This would also increase 
computational problems arising from the singularities of the analytical solutions, occurring at 
r = a, for each element. Our results show that, for an aspect ratio lower or equal to 0.3, a single 
element model is suitable to represent both displacement and stress, with a sufficient accuracy. 
A higher aspect ratio would lead to an RMSRE significantly greater than 30% in the estimation 
of the stress field in the median plane. Accordingly, the geometry of the TPE source inferred 
by Mantiloni et al. (2020) to model the surface displacement in the 1982-1984 Campi Flegrei 
unrest, having d/a = 0.3, falls within the acceptable range.

Conversely, to represent an inclusion with an aspect ratio equal to one, considering 11 
elements would be the optimal solution. The results obtained in this work also indicate that the 
greatest differences, between the effects generated by the disc solution and the thick discretised 
model, are obtained in the median plane of the inclusion, for stress component. The approach 
used to discretise TPE inclusions could also be applied when these sources are in a viscoelastic 
(VE) half-space [TPVE inclusions: Nespoli et al. (2023)]. The results obtained are also important 
in representing the transient effect of vertical fluid propagation inside a TPE when the inclusion 
potency varies with time and depth (e.g. Belardinelli et al., 2022). For these reasons, we think 
that the results of the present work are worthy of consideration for the proper use of TPE 
deformation source models.
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