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ABSTRACT The southern Hamedan area in western Iran is a region with high potential for Mississippi 
Valley type Pb-Zn mineralisation, for which a suitable prospecting map is needed to 
optimise future mineral exploration. Satellite imagery, geologic and geochemical data 
sets of the area were used to map Pb-Zn mineralisation potential using the analytical 
hierarchy process and the technique of order preference by similarity to the ideal 
solution (AHP-TOPSIS). Various criteria maps representing specific Pb-Zn criteria, such 
as lithological classes, structural controls, hydrothermal alteration, and geochemical 
anomalies in the Pb and Zn catchment basin geochemical anomalies, were integrated 
using the AHP-TOPSIS approach to obtain a final favourable map of Pb-Zn mineralisation 
in the southern Hamedan area. Fractal analysis was used to classify the final potential 
map into three zones: highly favourable, favourable, and slightly favourable. The four 
known Pb-Zn deposits are located in or adjacent to the highly favourable pixels. It is 
recommended that the unexplored highly favourable and favourable zones be considered 
for further exploration.
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1. Introduction

In mineral exploration, the main objective is to find new deposits in the study area. The most 
important steps in mineral exploration are to identify areas with high potential.

In this context, various exploration information such as satellite imagery, geological maps, 
geochemical anomaly maps, and geophysical signatures must be integrated to find areas of high 
mineralisation potential. Since the objective of mineral potential mapping (MPM) is to produce 
a predictive map based on several different exploration criteria, it can be considered as a multi-
criteria decision-making problem (Bonham-Carter, 1994; Carranza et al., 2008; Abedi et al., 
2012a; Ghezelbash and Maghsoudi, 2018).

In recent years, various data integration algorithms have been introduced and applied by 
different researchers, which can be divided into data-driven and knowledge-driven categories. In 
data-driven algorithms, known mineralisation indices of the study area are considered as training 
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data locations to investigate the relationships between mineralisation and evidential layers. 
Weight of Evidence (Asadi and Hale, 2001; Ford et al., 2016), Support Vector Machine (Abedi et 
al., 2012a; Geranian et al., 2016), Random Forests (Carranza and Laborte, 2015a, 2015b, 2015c; 
McKay and Harris, 2016), logistic regression (Agterberg and Bonham-Carter, 1999; Carranza and 
Hale, 2001), and artificial neural networks (Porwal et al., 2003b; Abedi and Nouruzi, 2012) are 
the best examples of data-driven algorithms.

In areas with less exploration activities, the amount of training data is not substantial and, 
therefore, the use of knowledge-based methods is appropriate. In such methods, exploratory 
evidential layers such as geological, geochemical, geophysical, and remote sensing criteria are 
weighted and integrated based on the opinions of geology experts (Carranza, 2011; Ghezelbash 
and Maghsoudi, 2018). The most common knowledge-based methods include: index overlay 
(Bonham-Carter et al., 1990; Carranza et al., 1999; Yousefi and Carranza, 2015) and fuzzy logic 
(An et al., 1991; Porwal et al., 2003a; Abedi et al., 2013a, 2013b).

Since mineral potential modelling produces a favourability map based on the integration of 
multiple exploration data obtained from different sources of information, it can be considered as 
a Multi-Criteria Decision Making (MCDM) problem (Abedi et al., 2012a, 2012b, 2013a, 2013b). 
In recent years, various MCDM algorithms have been used as knowledge-based methods, such 
as the analytical hierarchy process (Hosseinali and Alesheikh, 2008; Pazand et al., 2011; Abedi et 
al., 2013b), ELimination and Choice Translating REality (ELECTRE) algorithm (Abedi et al., 2012a), 
Preference Ranking Organisation METHod for Enrichment Evaluation (PROMETHEE) algorithm 
(Abedi et al., 2012b) and the Technique for Order of Preference by Similarity to Ideal Solution 
[TOPSIS (Pazand et al., 2012)] as tools for mineral potential mapping.

In this paper, an integrated Analytic Hierarchy Process TOPSIS (AHP-TOPSIS) algorithm 
introduced by Pazand and Hezarkhani (2015) was used to map the potential of Mississippi 
Valley-type (MVT) Pb-Zn mineralisation in a relatively unexplored area in western Iran. The 
AHP-TOPSIS strategy is chosen because it has successfully been used in district-scale mineral 
potential mapping in recent researches (Asadi et al., 2016). In addition, AHP-TOPSIS offers some 
compositional advantages. It is not a pure knowledge-driven or data-driven method, but a hybrid 
method. Similar to knowledge-driven methods, a criteria weight vector is required, but no 
inference system is used. Comparable to data-driven methods such as fuzzy c-means clustering, 
the ranking approach is based on the distance of alternatives to positive and negative ideals. The 
AHP-TOPSIS only needs the comparison matrix as input information to obtain the criteria weight 
vector, while other knowledge-based methods need more primary information.

The main parts of this study are as follows: first, the background of the data integration 
algorithm used, AHP-TOPSIS, is presented. Then, the prepared exploration criteria are outlined. 
Finally, the results of data integration modelling are presented and discussed.

2. Methodology

The AHP-TOPSIS algorithm consists of two basic steps. In the first step, the importance weight 
of the exploration criteria is determined from the AHP. In the next step, the TOPSIS algorithm is 
used to integrate the various information layers. The details of the AHP and TOPSIS algorithms 
are presented in the following sections.
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2.1. AHP

The AHP algorithm was first introduced by Saaty (1977, 1980, 1994). It considers a decision-
making problem as a hierarchical structure with elements and levels. The first level of the AHP 
structure is the final objective of the problem, which is an MCDM map, and the next levels 
are consistent with criteria and sub-criteria. To calculate the weights of the criteria, a pairwise 
comparison matrix should be created in which the components of each level are compared in 
pairs with a specific component at a higher level. To construct the comparison matrix in the 
AHP procedure, the pairwise comparison scale with real numbers from 1 to 9 (Table 1) was first 
introduced by Saaty (1997).

Table 1 - Ratio scales from 1 to 9 in the AHP procedure (from Saaty, 1977).

 Number of elements 3 4 5 6 7 8 9 10 11 12 13

 RI 0.52 0.89 1.11 1.25 1.35 1.4 1.45 1.49 1.51 1.54 1.56

The pairwise comparison matrix (A) for n criteria {c1, c2, c3, …, cn} within the second level, with 
regard to the ultimate goal, is prepared as:

(1)

where aij refers to the pairwise comparison between the components i and j of a level with 
regard to the upper level. The elements aij are controlled by the following constrains:

(2)

Researchers have presented various approaches for determining the weights of vectors from 
the pairwise comparison matrix A, of which the eigenvalue approach proposed by Saaty (1977, 
1980) is the most convenient. In the eigenvalue approach, the weights are determined based on 
the eigenvector w of the matrix A:

(3)

In this approach, the vector for the weights of the elements is obtained by normalizing w. λmax 
is the largest eigenvalue of the matrix A. The pairwise comparison must satisfy the transitivity 
expectations of pairwise comparisons. That is, it must satisfy the following relation condition:

(4)

The consistency of the comparison matrix can be examined by the consistency ratio (CR), 
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which can be calculated by the following equation:

(5)

where RI is known as the random index and CI is known as the consistency index. It is 
recommended that CR < 0.1 is allowed (Asadi et al., 2016). The average RI values are suggested 
by Saaty (1980, 2001) and are shown in Table 2. The CI value for an n×n matrix is calculated by 
the following equation:

(6)

Table 2 - Values of RI for different numbers of elements of the comparison matrix (Tzeng and Huang, 2011).

 Number of elements 3 4 5 6 7 8 9 10 11 12 13

 RI 0.52 0.89 1.11 1.25 1.35 1.4 1.45 1.49 1.51 1.54 1.56

2.2. TOPSIS

Among the proposed solution methods for MCDM problems, TOPSIS is a popular algorithm 
first introduced by Hwang and Yoon (1981) and, then, further developed by Lai et al. (1994) and 
Yoon and Hwang (1995). It is a straightforward algorithm that only requires weights as input from 
the operator (Opricovic and Tzeng, 2004; Jahanshahloo et al., 2006; Tzeng and Huang, 2011), 
which are determined by the AHP method in this work, as explained in the previous section. The 
main steps of the TOPSIS algorithm are as follows (Hwang and Yoon, 1981; Jahanshahloo et al., 
2006; Tzeng and Huang, 2011):

1. construct a ranking decision matrix with the structure as follows:

(7)

where Ai defines the alternatives i, i = 1, 2, 3, …., m; cj shows jth criterion, j = 1, 2, …, n, 
belonged to ith alternative; and gij is a certain value denoting the efficiency rating of each 
alternative Ai related to each criterion cj;

2. normalise the decision matrix. The normalised value (rij) can be calculated as follows:

(8)
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3. determine the weighted normalised decision matrix with vij values as follows:

(9)

4. calculate the positive ideal and negative ideal solutions through the following equations:

(10)

(11)

where J’ is the benefit features and J’’ is the cost features;
5. calculate the individual alternatives from the ideal solution and the negative ideal solution 

   through the Euclidean distance as follows:

(12)

(13)

The relative similarity/closeness (RC) to the ideal solution can be determined with the 
following equation:

(14)

sorting the alternatives according to their relative proximity to ideal solution. The most 
favourable alternative is the one that has the highest RC.

3. Study area and exploration keys

The case study with an area of about 3500 km2 is located between 48°02’ and 49°12’ E 
longitude and 33°59’ and 34°55’ N latitude. The study area, located in the southern province of 
Hamedan in western Iran (Fig. 1), is a part of the Sanandaj-Sirjan tectonic belt. The Hamedan city 
is located in the north-eastern edge of the study area, and its aerial distance to the centre of the 
study area is about 40 km.

On the other hand, part of the Irankuh-Emarate Pb-Zn MVT belt presented by Karimpour and 
Sadeghi (2018) is located in the study area, which is an important MVT Pb-Zn mineralisation area 
in Iran. Based on the mineral exploration findings obtained from the detected Pb-Zn MVT indices 
in this belt, a set of criterion levels was selected as follows.



306

Bull. Geoph. Ocean., 64, 301-316 Darabi et al.

3.1. Lithology

The known MVT deposits in the Irankuh-Emarate belt are mainly hosted on Lower Cretaceous 
to Cretaceous dolomitic rocks with multiple mineralisation phases (Karimpour and Sadeghi, 
2018; Rajabi et al., 2019). Based on the above information, the three important criteria were 
extracted from a geological map of the study area at a scale of 1:100,000 include dolomitic rocks, 
contact metamorphic rocks and intrusive igneous rocks.

3.2. Faults

The detailed studies on the structural control of the proven MVT deposits in the Emarate-
Irankuh belt show that the mineralisation of these deposits is strongly influenced by normal and 
reverse faults (Yarmohammadi, 2015; Boveirii Konari, 2016; Mahmoodi et al., 2018; Movahednia 
et al., 2018; Peernajmodin, 2018). Based on fault lines extracted from the geological map of the 
study area, a raster fault density map was created and considered as a criteria map (Fig. 3).

Fig. 1 - Location of the study area from satellite images.
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3.3. Alteration

Silicified rocks, hydrothermal alteration, and Fe-rich zones are the main alterations observed 
in the known deposits in the Emarate-Irankuh belt (Ehya et al., 2010; Mahmoodi et al., 2018; 
Peernajmodin, 2018; Niroomand et al., 2019).

Minerals associated with these alteration zones exhibit spectral absorption features in the 
visible near-infrared (VNIR), shortwave infrared (SWIR), and thermal infrared. The advanced 
space-borne thermal emission and Reflection Radiometer (ASTER) is used in this study to map 
alteration zones. The Aster imagery covers the VNIR (0.52-0.86 μm), SWIR (1.60-2.43 μm), and 
thermal infrared (TIR) (8.125-11.65 μm) spectral regions with 14 bands and high spatial (15 for 
VNIR, 30 for SWIR, and 90 m for TIR), spectral, and radiometric resolution (Pournamdari et al., 

Fig. 2 - Geological map of the study area scale of 1:100,000.
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2014). The ASTER VNIR bands can be used to detect transition metals such as Fe oxide; the ASTER 
SWIR channels are important sources of spectral information on Al-OH, Fe-OH, Mg-OH, H-O-H 
and CO3 minerals that can be used to detect argillic alteration, and the bands of ASTER TIR can 
be used to detect silicification zones (Amos and Greenbaum, 1989; Shahriari et al., 2013). The 
Spectral Angle Mapper (SAM) algorithm is applied to the ASTER image to create an alteration 
map of the case study area. SAM is a supervised classification method that calculates the angle 
between the image spectra and the reference spectra (Galvão et al., 2005; Gabr et al., 2010; 
Honarmand et al., 2012; Feizi and Mansuri, 2013). The United States Geological Survey (USGS) 
spectral library was used to select VNIR, SWIR and TIR reference spectra of iron oxide, argillic 
alteration, propylitic alteration, and silicified rocks (Fig. 4).

Fig. 3 - Lineament density map of the study area.
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3.4. Geochemistry

1200 stream sediment samples were collected in the study area and analysed by the 
Geological Survey of Iran using the ICP method at the scale of 1:100,000. The average sampling 
distance is about 1.5 km. A pattern catchment analysis approach was applied to these stream 
sediment geochemical data to produce the raster maps of Pb and Zn geochemical anomalies. 
By considering the local Clark values of the Pb and Zn variables equal to 220 and 740 ppm, 
respectively, the anomalous catchments were identified (Fig. 5).

Fig. 4 - Hydrothermal alterations mapped from analysis of Landsat ETM+ and ASTER satellite data.
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4. Results

A hybrid AHP-TOPSIS method was used to integrate the prepared exploration criteria and 
produce a final MVT Pb-Zn mineral potential map of the southern Hamedan area. The considered 
hierarchy structure, based on the input criteria, for MVT Pb-Zn mineralisation in the study area is 
shown in Fig. 6. It should be noted that the analysis of all the layers prepared in the previous steps 
was performed on a 200×200 m2 grid. This choice was made to take into account the dimensions 
of the geological structures of the study area and to achieve maximum variability. To prepare 

Fig. 5 - Sample catchment basin geochemical map of the elements Pb (left) and Zn (right).
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the comparison matrices, we asked five Iranian geology experts, familiar with Pb-Zn mineral 
potential, to create the comparison matrices and send them to us. Then, we used the average 
of these comparison matrices to determine the weights by the AHP-TOPSIS method. In this way, 
their opinions influenced the AHP-TOPSIS process. In order to obtain the weight of importance 
of the four main criteria, first a comparison matrix was created with appropriate CR value (CR = 
0.028). Then, the weight of importance of the individual criteria was calculated through the AHP 
method (Table 3). The geology, geochemistry, and alteration layers have some sub-criteria whose 
weights have to be calculated. The comparison matrix of three geological sub-criteria with CR = 
0.011 was created and the relative weights were obtained using the AHP method (Table 4). The 
alteration criterion consists of four sublayers, including silicification, iron oxide, propylitic, and 
argillic alteration. The weights of the importance of these sub-criteria were also determined 
using the AHP method and based on a pairwise comparison matrix, taking into account the 
opinion of the geology experts (Table 5). The geochemical layer consists of two sub-criteria, 
including the Pb and Zn geochemical anomaly map. As in the previous steps, the weights of each 
geochemical anomaly map were determined using the AHP method (Table 6). To apply the AHP-
TOPSIS algorithm, the criteria were first translated into raster maps. Then, using MATLAB scripts 
developed for AHP-TOPSIS, the relative similarity/closeness to the ideal solution was calculated 
for each cell of the final raster mineral potential map. Fractal analysis was used to reclassify the 
final MVT Pb-Zn favourability map into three classes. The thresholds determined by the fractal 
analysis are shown in Fig. 7. Fig. 8 clearly shows that the known MVT-Pb-Zn deposits are located 
in or near the highly favourable areas. In addition, several areas of high potential (similar to the 
known deposits mentioned above) have been identified for further exploration.

Fig. 6 - The considered hierarchical structure for mapping MVT-Pb-Zn favourability of the southern Hamedan area.

Table 3 - Comparison matrix and obtained weights of the main criteria through AHP method used for MVT Pb-Zn 
mineral potential mapping.

	 Criteria	 Geology	 Structure	 Alteration	 Geochemistry	 Weights

 Geology 1 1/2 1/3 1/4 0.10

 Structure 2 1 1/2 1/4 0.15

 Alteration 3 2 1 1/2 0.27

 Geochemistry 4 4 2 1 0.48

 CR = 0.028 
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Table 4 - Pairwise comparison matrix and obtained weights of the three geological units through AHP method.

	 Criteria	 Dolomitic	rocks	 Intrusive	rocks	 Metamorphic	rocks	 Weights

 Dolomitic rocks 1 3 5 0.61

 Intrusive rocks 1/3 1 3 0.29

 Metamorphic rocks 1/2 1/3 1 0.10

 CR = 0.011

Table 5 - Pairwise comparison matrix and obtained weights of the four alteration sub criteria through AHP method.

	 Criteria	 Silicification	 Fe-Oxide	 Propylitic	 Argillic	 Weights

 Silicification 1 1 2 3 0.32

 Fe-Oxide 1 1 2 3 0.32

 Propylitic 1/2 1/2 1 2 0.19

 Argillic 1/3 1/3 2 1 0.17

 CR = 0.017 

Table 6 - Pairwise comparison matrix and obtained weights of the two geochemical anomaly maps through AHP 
method.

	 Criteria	 Pb	 Zn	 Weights

 Pb 1 2 0.67

 Zn 1/2 1 0.33

 CR = 0

Fig. 7 - Log-log diagram of favourability area obtained from the fractal analysis.
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Fig. 8 - The classified mineral potential/favourability map was created by integrating various exploration data sets 
using the AHP-TOPSIS method.

5. Discussion and conclusion

In this article, we have attempted to construct an MVT-Pb-Zn favourability map for a greenfield 
area with a small number of known Pb-Zn mineralisation indices in the southern Hamedan 
province of western Iran. This area is part of the Irankuh-Emarate belt, which hosts known MVT 
Pb-Zn deposits in Iran. For this purpose, an MCDM approach AHP-TOPSIS was used, which is 
composed of two well-known MCDM algorithms, namely AHP and TOPSIS. In this approach, the 
relative importance weight of each exploration layer/criterion is calculated based on a pairwise 
comparison matrix suggested by MVT-Pb-Zn deposit expertise and using the AHP algorithm. 
In the next step, the pixels of the final favourability raster map are ranked using the TOPSIS 
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algorithm, whose strategy is similar to both knowledge-based and data-based algorithms. This 
strategy is based on the calculation of the distance between the alternatives and the positive and 
negative ideal solutions. The AHP-TOPSIS approach requires only the comparison matrix as input 
parameters, unlike other algorithms such as fuzzy logic that require more input parameters.

Four main exploration layers, including a 1:100,000 scale geological map, an alteration map, a 
fault density map, and a map of Pb and Zn geochemical anomalies in the catchment area of the 
study area, were created and compiled into a final mineralisation potential map.

Through fractal analysis, the final potential map was divided into three classes: highly 
favourable, favourable, and slightly favourable pixels. The four known prominent Pb-Zn deposits 
are located in or near the highly favourable pixels. Several unexplored highly favourable and 
favourable pixels have been identified and are recommended for further exploration.
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