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ABSTRACT	 3D Modelling of gravity data is generally performed as a multi-objective optimisation, 
trying to minimise observed-calculated data misfit while providing models with certain 
properties, such as smooth or sharp boundaries. We demonstrated that controlling 
the model properties in global optimisation schemes is possible through basic image 
processing filters, and developed a Particle Swarm Optimisation (PSO) algorithm that 
benefits from Gaussian and Percentile filters to avoid ambiguous boundaries that 
are generally seen in 3D smooth inversions of gravity data. The effectiveness of the 
algorithm is shown on a synthetic model consisting of two dipping structures with 
anomalous density contrasts. Thereafter, the algorithm is implemented to recover 
subsurface density distribution from a field data set. The field data is collected at 
the south-western part of the Sinanpaşa graben, Turkey. Due to the lack of previous 
geophysical studies in the area, 3D Euler decomposition, tilt angle, and 3D smooth 
inversion methods are also implemented to help interpretation and to compare to the 
model recovered using the PSO algorithm. The developed approach is observed to be 
resulted with a model, which is more compatible with the known geology of the region.

Key words:	 gravity modelling, Particle Swarm Optimisation, 3D inversion, 3D Euler decomposition, Sinan-
paşa graben.

1. Introduction

Derivative based inversion methods are used widely to recover structure shapes and 
depths from gravity data. Numerous inversion schemes for determining simple geometries 
from gravity data are present in the literature (e.g. Chakravarthi and Sundararajan, 2004; Essa, 
2013; Abdelrahman and Essa, 2015), however, a more complete picture of the subsurface can 
be obtained through 3D modelling, in which the entire data set is evaluated (e.g. Cella et al., 
2007; Khalil et al., 2014; Witter et al., 2016). The use of global optimisation methods for gravity 
modelling is implemented for more than a decade (e.g. Montesinos et al., 2005, 2006; Berrino 
and Camacho, 2008; Pallero et al., 2015, 2017; Singh and Singh, 2017; Ekinci et al., 2021), 
and still increasing with the development of faster forward modelling algorithms and higher 
parallelisation capabilities of PCs.

The structures in the models obtained from 3D smooth inversion methods are generally 
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recovered with ambiguous boundaries, misleading fault dips and vertically exaggerated structures 
(Witter et al., 2016), which are difficult to interpret. In the smooth inversion schemes, models with 
maximum possible smoothness are generally aimed and the level of smoothness is adjusted to 
increase fitting between the observed and the calculated data sets. However, sharper boundaries 
might be wanted in many geological scenarios (Mehanee and Zhdanov, 2002), making better 
control of the smoothness and sharpness necessary. In traditional inversion methods, sharper 
boundaries are often ensured by the implemented stabilising functional (e.g. Portniaguine and 
Zhdanov, 1999; Smith et al., 2001; Mehanee and Zhdanov, 2002; Auken and Christiansen, 2004; 
de Groot-Hedlin and Constable, 2004; Zhao et al., 2016; Guo et al., 2017). Another method to 
overcome the mentioned problems is to use Bayesian methods. In these methods, a large amount 
of candidate models are determined and the probabilities of the recovered models are evaluated, 
yielding better estimations for the structure boundaries (e.g. Chen et al., 2014; Ray et al., 2014; 
Rossi et al., 2015; de Pasquale et al., 2019; Seillé and Visser, 2020). When the Global Optimisation 
methods are used, structural modelling approaches are generally implemented (e.g. Mohnke and 
Yaramanci, 2002; Akça and Başokur, 2010; Başokur and Akça, 2011).

In the algorithm used in this study, Gaussian and Percentile filters, which are generally used for 
image processing, are integrated into a Global Optimisation scheme to find a balance between 
smoothness and sharpness.

Gaussian filters are applied widely to smooth data. In geophysical inversion, smoothing 
operators are often scaled to account for the cell sizes. Correspondingly, the implemented 
Gaussian filter kernel is scaled according to the cell dimensions. The Percentile filter is also applied 
to filter low frequency effects without smoothing boundaries. The model parameters, obtained 
after the implementation of these two filters, are expected to be minimising the observed-
calculated data misfit while providing relatively simple models with well-defined boundaries.

The developed modelling approach is implemented using Particle Swarm Optimisation (PSO), 
which is an evolutional global optimisation algorithm finding optimal solutions by trial and errors. 
Accordingly, the method starts from a randomised set of model parameters (density contrasts) and 
changes them in each iteration until the desired model fitness is achieved. In order to show the 
effectiveness of the developed algorithm, the method is implemented on a synthetic data set with 
two dipping structures. The structure boundaries obtained using PSO with Gaussian and Percentile 
filters are observed to be closer to that of the actual model. Thereafter, the algorithm is applied on 
a field data set collected in the south-western part of the Sinanpaşa graben in Turkey.

For comparison, the data are also modelled in 3D using a derivative based smooth inversion 
approach. Since the true structure of the Sinanpaşa graben is unknown, the data is also 
interpreted using 3D Euler deconvolution and tilt angle methods, which are used widely for 
preliminary interpretation of the gravity anomalies (e.g. Salem et al., 2005; Drahor and Berge, 
2006; Oruç and Keskinsezer, 2008; Oruç, 2011; Tedla et al., 2011; Oruç et al., 2013; Kıyak et al., 
2015; Ghosh, 2016).

2. Methods

2.1. PSO algorithm

PSO is a trial-error based evolutionary global optimisation algorithm developed by Kennedy 
and Eberhart (1995). The algorithm starts from a number of randomly generated initial models, 
which is called the population, and parameters in these models are updated iteratively to find 
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an optimal solution. Basically, PSO is the algorithm setting the rules to update these parameters.
For a population of N models, the nth model with M model parameters can be defined with 

a model parameter vector mn = mn,1, mn,2, …, mn,M. For the gravity modelling case, mn consists of 
density contrast values associated to each cell. In our implementation, rectangular prism cells 
are used for discretising the subsurface.

Starting models are generally not employed in PSO and other similar global optimisation 
algorithms (e.g. genetic algorithms); however, a priori information is usually available in geophysics 
from geology or previous studies and valued greatly due to the non-uniqueness of the solutions. 
According to our trials, using an initial population randomly scattered around a user defined starting 
model (m0) with the assumed background density contrast decreases the time consumption 
significantly and helps algorithm to avoid local minima. In our studies with synthetic and field data, 
we assumed m0 = m0,1, m0,2, …, m0,M = 0 g/cm3 in case of no priori information. The initial parameters 
of the models, constituting the population, are generated as below:

(1)

where r = r0, r1, .., rM is a vector of uniformly distributed random values between [-1, 1]. The 
multiplier of the random vector is chosen to be necessarily low to keep the starting population 
around the initial model. Higher values of this multiplier may cause loss of the a priori information. 
After the fitness of the models in the population is tested, parameters in each model are updated 
using the equations below (Clerc and Kennedy, 2002):

(2)

(3)

where i is the iteration number, ϕ1 and ϕ2 are uniformly distributed random parameters between 
[0, 1]. The damping factor χ is applied to prevent fluctuations in model parameters and given 
in Eq. 4. The parameter mn,best is the best model parameters obtained for the nth model of the 
population (local best) and mg,best is the vector of best model parameters determined considering 
the entire population (global best). We used Eq. 5 as the cost function to evaluate the fitness of 
each model, and to determine mn,best and mg,best.

(4)

where c = c1 + c2 and c1 and c2 are generally chosen to satisfy c ≥ 4, and the value of the multiplier k is 
selected between [0, 1]. In the study of Clerc and Kennedy (2002), an analysis of these parameters 
is realised and values leading to better convergence are determined. Accordingly, c1 and c2 are 
generally selected to be 2.05 and the value of k is set to ~ 0.99994 to make χ equal to 0.7298 (e.g. 
de Oca et al., 2008, 2011; Li and Yao, 2011). These values are also adopted in this study.

In traditional inversions, model smoothness is often introduced into the minimised functional 
and it is assured with methods that need the Jacobian matrix. In global optimisation, Jacobian 
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is not needed and adding the smoothness into the cost function is generally impractical due 
to the time cost of realising multi-objective optimisation for smoothness and misfit. Another 
factor increasing the solution time is the number of independent model parameters. In order 
to decrease the solution time, low-pass filters can be introduced into the global optimisation 
schemes to adjust model properties and to increase the interconnection between the model 
parameters. In this study, Gaussian and Percentile filters are implemented for these purposes.

Gaussian filters are widely used for low-pass filtering. When these filters are scaled according 
to the cell dimensions, they become analogous to the smoothing matrices used in traditional 
inversion methods. On the other hand, Percentile filters are non-linear filters, eliminating high 
frequency variations while keeping the boundary information. These filters are introduced into 
the PSO algorithm by implementing the cost function, given below:

(5)

where: W is the weighting matrix, g is the vector of observed data, F denotes the forward 
solution, mn(i) is the nth model in the ith iteration. Forward calculation is realised using mn(i) after 
applying Gaussian and Percentile filters, denoted with G and P, respectively. Accordingly, values 
in the vector mn are not treated as the actual model parameters; these parameters are expected 
to minimise the misfit after Gaussian and Percentile filtering, respectively. Flowchart of the 
developed PSO workflow is provided in Fig. 1a.

The main parameters of the algorithm are the amount of filtering, percentage value for the 
Percentile filter, the population count, and the maximum number of iterations. Among these 
parameters, the amount of the implemented Gaussian filter forces algorithm to yield smoother 
models. In this study a simple 3D Gaussian kernel with the size of (3×3×3) cells is implemented. 
Graphical representation of the filter is given in Fig. 1b.

For a cell with dimensions wx, wy, wz in x, y, z directions, coefficients of the scaled filter kernel 
(G in Eq. 5) are calculated as below:

(6)

The central coefficient is assigned as A0 = 0.5 and the neighbouring coefficients A1, A2, and A3 
are normalised to yield:

(7)

The coefficients are calculated separately for each cell and their values can be adjusted 
further to provide different amount of smoothness in each direction. 

The smoothness of the geological boundaries depends on the geology and the amount of 
smoothness should be selected to satisfy the geological constraints of the study area. In this 
context, if lower smoothness is necessary, the Percentile filter, which is also a low-pass filter, can 
be applied to increase the interconnection without smoothing the boundaries.
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Percentile filtering is often used in image processing to remove noise. The method is known 
to be removing high frequency effects while preserving boundaries (Ataman et al., 1981). The 
method ranks the values in the defined window and replaces the central pixel with the value 
corresponding to the desired percentile. In this study, the Percentile filtering algorithm provided 
with the SciPy library (Virtanen et al., 2020) is implemented. The Percentile filter works as a 
minimum filter for the percentile value of 0 and as a maximum filter for 100. Accordingly, when 
the percentile is set to 100, the filter returns the maximum value in the filter window and vice 
versa. When the percentile is set to 50, the filter becomes a median filter.

Applying Percentile filter as a median filter (50%) replaces the value of a cell with the median 
value of the surrounding cells in the window; however, if the lower or higher percentile values 
are used, parameters become biased to have lower or higher values, respectively. As the 
filter approaches to become a maximum or minimum filter, the amount of this bias increases 
and the models are recovered with higher contrasts between structures. For example, when 
a percentile of 100% is used (maximum filter), the value of any given cell is replaced with 
the maximum value encountered in the filter window, increasing the value of the given cell. 
Accordingly, choosing the percentile considering the density contrasts of the anomalous 
structures yields better results. Considering this, a priori information is necessary for the 
selection of an appropriate percentile value.

In this study, Gaussian and Percentile filters are applied recursively and its amount is 
determined by trial and errors. Using the smoothing operator recursively is also implemented 
in geophysical smooth inversion algorithms (e.g. Kelbert et al., 2014). The size of the Gaussian 
and Percentile filter windows are set to be (3×3×3) cells since higher filter sizes resulted with the 
loss of detail. However, larger filter windows may be preferred when denser meshes are used. 
The Percentile filter is applied close to be a maximum filter since the main objective both for the 
synthetic and the field examples is to reveal relatively high density structures.

The population count defines the amount of models to be generated every iteration and 
its value directly affects the solution time. Even though, higher population counts increase the 
quality of the solutions, its effect decrease after an optimum value (Li and Yao, 2011). In this 
study, the population size is selected according to the approach given in Li and Yao (2011):

(8)

where M is the number of model parameters (density contrasts).
With the implemented approach, it was possible to limit the maximum number of iterations 

to be 3500 and the optimisation is stopped if the desired observed-calculated data misfit is met 
(Fig. 1a). In this study, the misfit is measured using Root Mean Square (RMS) error, which can be 
given as below:

(9)

where: ng is the size of the data vector, Wg is the data weighting matrix, and F[m] is the calculated 
data for the model parameters (m).

The introduced filters and modelling parameters do not guarantee convergence or overcome 
non-uniqueness. The optimisation process can still stagnate due to the local minima, non-careful 
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selection of starting models or filtering parameters. These parameters should be selected and 
adjusted to reflect the known geological constraints and to minimise misfit between the observed 
and the calculated data. Due to the random nature of the PSO and the non-uniqueness of the 
problem, it is possible to obtain different results for the same data and optimisation parameters. 
The solutions are expected to be more robust with the implemented filters; however, obtaining 
different but generally similar solutions is still possible.

Fig. 1 - Flowchart of the PSO algorithm (a) and the graphical representation of the 3D Gaussian kernel with the size of 
(3×3×3) cells (b).

2.2. 3D smooth inversion

The inversion algorithm employed in this study discretises the subsurface using rectangular 
prism cells and the forward solutions are calculated using the equations provided in Li and 
Chouteau (1998). The implemented algorithm applies depth weighting as it is explained in Li and 
Oldenburg (1998).

Forward solution of gravity data can be defined as below:

(10)

where J is the matrix of coefficients defining the contributions from each cell to calculated 
data and F[m] is the forward solution (calculated data) for the model parameter vector m. In 
gravity modelling, vector of model parameters consists of density contrast values associated to 
each cell.

In this study, inversion with smoothness constraint (Li and Oldenburg, 1998; Li, 2001; 
Farquharson, 2008) is implemented for the given gravity modelling problem. For the smooth 
inversion, the objective function to be minimised can be written as a sum of two components; 
least-squares misfit between the observed and calculated data, and the regularisation term 
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(Constable et al., 1987; de Groot-Hedlin and Constable, 1990; Li and Oldenburg, 1998; Li, 2001). 
Accordingly, the objective function can be given as below:

(11)

where W is the weighting matrix; F(m) is the forward solution (calculated data) using the model 
parameters m. µ is the Lagrange coefficient, controlling the trade-off between smoothness and 
misfit; C is the regularisation term. In smooth inversion, regularisation is realised using matrices 
calculating differences between adjacent model cells and the model parameters satisfying the 
desired misfit between observed and calculated data can be found using:

(12)

where: ∂x, ∂y, and ∂z denote matrices differencing adjacent cells (roughening matrices); i is the 
iteration number; J is the coefficient matrix; g is the observed data. In order to find the smoothest 
models with the required misfit, larger values of µ are applied. If the solution does not satisfy the 
condition for the misfit, is decreased, resulting with rougher models.

Due to the non-uniqueness of the problem, the solution recovered using the Eq. 12 may not 
be geologically reasonable. If there is a priori information about the densities of the subsurface 
structures, upper and lower limits for model parameters can be defined. These boundaries can 
be simply applied by setting the model parameters out of the limits to the defined boundary 
values (Chasseriau and Chouteau, 2003); however, the described process may increase 
observed-calculated data misfit, making the solution unacceptable. In this case, even though 
the gravity field at any point on the surface is linearly related to the model parameters in Eq. 
10, iterative solutions are applied (Li, 2001; Chasseriau and Chouteau, 2003). Accordingly, new 
model parameters can be calculated using:

(13)

where F[mi] denotes the forward solution using the current model parameters in the ith iteration mi.

2.3. 3D Euler deconvolution and tilt angle calculations

The 3D Euler deconvolution (Reid et al., 1990) and tilt angle (Miller and Singh, 1994) is applied 
widely on gravity data for detecting faults and lineaments:

(14)

where gw(x, y, z) is the data in the applied window to be assumed due to a point source, which is 
located at (x0, y0, z0), and n is the Structural Index (SI) value associated with the assumed source 
geometry.

The 3D Euler deconvolution is essentially based on the Euler’s inhomogeneity equation. The 
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method is applied to the residual potential field data with a data window, parsing ≥ 5 data points 
in each direction. By assuming point sources, location and depth information for the anomaly 
in the given data window is recovered from the least-squares solution of Eq. 14. Solutions for 
various point sources can be obtained by simply changing the SI. SI values for gravity data, 
corresponding to different point sources, are provided in Table 1. Detailed information about 
the implementation of the 3D Euler deconvolution method can be found in Reid et al. (1990), 
Stavrev (1997), FitzGerald et al. (2003), Silva and Barbosa (2003), Reid and Thurston (2014) and 
Reid et al. (2014).

Table 1 - Structural index values for gravity data (Reid et al., 2014).

Model SI

Point, sphere 2

Line, cylinder, thin bed fault 1

Thin sheet edge, thin sill, thin dike 0

Thick sheet edge -1

Tilt angle (θ) calculations are realised using the first derivatives of the data, using (Miller and 
Singh, 1994; Verduzco et al., 2004):

(15)

The zero contours on the tilt angle maps indicate structure boundaries. In this study, 
calculation and mapping of the tilt angle values are realised using Potensoft software (Arisoy 
and Dikmen, 2011).

3. Implementation on synthetic data

The synthetic data set is generated from a model consisting of two dipping structures with 
anomalous density contrasts (Figs. 2a and 2b). Synthetic data is sampled in every 50 m in both 
directions (Fig. 2c) and 5% Gaussian noise is added before the modelling (Fig. 2d).

The synthetic data set is modelled using smooth inversion (Figs. 3a, 4a, 4b), PSO with Gaussian 
filter only (Figs. 3b, 4c, 4d), which can be considered analogous to smooth modelling, and PSO 
with Gaussian and Percentile filters (Figs. 3c, 4e, 4f), which is expected to yield better defined 
boundaries. In all modelling trials, density contrast values are forced to be > 0. We assumed,  
m0 = m0,1, m0,2, …, m0,M = 0 g/cm3 as the starting model, which corresponds to the true background 
density contrast.

According to our initial trials, applying low amount of filtering results with noisy looking 
models due to the low interconnection between the model parameters, and very high level 
of filtering results with oversimplified models. The level of Gaussian filter is adjusted to avoid 
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oversmoothing of the model parameters. The percentile filter is implemented with a high 
percentile value to increase the bias of the models parameters toward higher densities. After 
several tries, the Gaussian filter is applied 10 times recursively and the Percentile filter is 
applied using 95% percentile value. During the modelling, 5% error floor is assumed for data 
weighting and correspondingly the desired misfit is determined to be 1 mGal RMS to avoid 
fitting to the noise.

As result, all three models are obtained with 1 mGal RMS misfit. The model recovered using 
PSO algorithm with Gaussian and Percentile filters is observed to be reflecting the structures 
better since the oversmoothing is prevented and the parameters are biased to have higher 
density contrast values due to the effect of the percentile filter. Even though, the exact dips of 
the structures are not recovered in the model shown in Fig. 4f, the percentile filter observed to 
be keeping the structure boundaries relatively clear, even in the deeper parts of the model.

Fig. 2 - Top (z = 200 m) and side view (y = 1000 m) of the synthetic model, used for testing the developed algorithm, 
are given in panels a and b, respectively. The data, generated from the synthetic model, and the same data with 5% 
Gaussian noise are provided in panels c and d, respectively.
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Fig. 3 - Data, calculated from the modelling results of the smooth inversion, PSO with Gaussian filter, and PSO with 
Gaussian and Percentile filters are shown in panels a, b, and c, respectively.

Fig. 4 - The top (z = 200 m) and side views (y = 1000 m) of the recovered models are given in panels a and b for smooth 
inversion, in panels c and d for PSO with Gaussian filter, and in panels e and f for PSO with Gaussian and Percentile 
filters.
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4. Field data and geological setting

The field data set consists of vertical component gravity data (Fig. 5), collected on land in the 
western part of the Sinanpaşa graben in SW Turkey (Fig. 6) at 989 data points on a grid with 250-
m intervals in both directions using a Scintrex CG-5 Autograv gravity meter. Bouguer and terrain 
corrections are realised by the contractor company, which granted the data, assuming a 2.3 g/cm3  
constant density. The main feature in the Bouguer anomaly map (Fig. 5) and the residual gravity 
data (Fig. 7a) is the transition from higher anomaly values in the SW to lower in the NE. The 
direction of this transition is compatible to the strike of the faults in the region (Fig. 6) and 
related topographic features (Fig. 7b).

The study area is a part of a graben system, located in western Anatolia, lying in the Aegean 
Extensional Province (AEP). Previous studies show that the region went under two extensional 
phases interrupted by a compressional episode (Koçyiğit, 2005; Koçyiğit and Deveci, 2007). The 
compressional regime between late Miocene and mid-Pliocene caused the development of the 
reverse and strike-slip faults in the region (Koçyiğit and Deveci, 2007; Gündoğdu et al., 2015). The 
latest Pliocene marks the starting of the neotectonic regime and many of the normal faults in the 
region are developed with the introduction of the present day NNE-SSW extensional regime. Due to 
the mentioned extension periods, a progressive inward development of normal faults is proposed 
(Alçiçek et al., 2005; Gürer et al., 2009) and may also be expected for the Sinanpaşa graben.

The study area encompasses the south-western part of the Sinanpaşa graben, which 
developed between Early Miocene and Pliocene (Akıska and Varol, 2020). The detailed geology 
maps of the study area (MTA, 2002, 2011) suggest that a large portion of the area is covered with 
the Miocene continental clastics and volcanics (Fig. 6), which are considered to be part of the N-S 
trending Kırka-Afyon-Isparta Alkaline Volcanic Assemblage (Savaşçin and Oyman, 1999).

Most of the Neogene basins in the region have a 0.5-3.0 km thickness, and according to 
Günen (2011), Quaternary sedimentary fill in Sinanpaşa graben is expected to be ~500 m. The 
basement of the Sinanpaşa basin is described with Paleozoic metamorphic rocks overlain by 
Mesozoic dolomitic limestone and marble (Candan et al., 2005; Akıska and Varol, 2020).

Fig. 5 - Bouguer anomaly map of the study area.

According to the active fault map of Emre et al. (2011), the eastern part of the 8.2 km long 
Elvanpaşa Segment (ES) of the Akşehir-Simav Fault Zone (ASFZ) resides nearly in the centre of the 
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study area, extending in a NW-SE trend. The study area lies in a seismic gap (Yildiz et al., 2012), 
however, the focal mechanisms of the earthquakes around the study area show normal faulting 
with a small strike-slip component (Eyidoğan and Jackson, 1985; Altuncu-Poyraz, 2009; Irmak 
and Taymaz, 2009; Irmak, 2013; Altuncu-Poyraz et al., 2014; Tiryakioğlu et al., 2018), which 
is compatible with the defined present day oblique-slip normal faulting of the ASFZ (Koçyiğit 
and Deveci, 2007). In the study of Günen (2011), faults representing the ASFZ in the region are 
described as north-dipping active faults with earthquake potential.

Fig. 6 - a) Major units controlling the neotectonics in Turkey. Location of the study area is shown with the black square. 
AEP: Aegean Extensional Province, NAFZ: North Anatolian Fault Zone, IEFZ: İnönü-Eskişehir Fault Zone, NEAFZ: North-
East Anatolian Fault Zone, EAFZ: East Anatolian Fault Zone, BZS: Bitlis-Zagros Suture. b) Simplified geology of the study 
area (redrawn from MTA, 2002) and the main segments of the ASFZ system in the vicinity of the study area (Emre et 
al., 2011). The normal faults in the area are shown according to the MTA (2011), and the footwall and the hanging-wall 
directions are indicated with ‘+’ and ‘-‘, respectively. The boundaries of the area of measurement are shown with solid 
black lines.

5. Results and discussion

Interpretation of the field data is mainly realised using the recovered 3D models; 3D Euler 
and tilt angle methods are also implemented for comparison. The 3D Euler decomposition is 
implemented on the residual gravity anomaly (Fig. 7a) using a window encompassing 8 data 
points in both directions. SI = 0 is generally employed to detect boundaries due to faults. Hence, 
the SI space is not investigated, and only the results for SI = 0 are calculated and provided 
overlaying the topography (Fig. 7b). The tilt angle calculations are realised using Eq. 15 and 
provided in Fig. 7c.
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Inversion of the data is realised using a mesh with 42,776 cells. The mesh consists of 34×54×25 
cells for z > 0 and 11×17×6 cells for z < 0. The topography is incorporated into the mesh design. A 
homogeneous half-space initial model with the assumed background density contrast ( 0 g/cm3) is 
employed. The inversion is stopped when RMS misfit of 1 mGal (Fig. 8a) is achieved according to 
the Eq. 9 and better fitting is not aimed to avoid fitting to the noise. Thereafter, the PSO algorithm 
is implemented using a mesh with 26×40×48 cells. After introducing the topography into the mesh, 
32,291 model parameters are remained to be searched by the algorithm. The population count is 
determined to be N = 36. Filter parameters are determined after several trial and errors. As result, 
the Gaussian filter is determined to be applied 3 times recursively to filter low frequency changes, 
and 99% percentile value is determined to increase the contrast and to give a bias toward higher 
densities to prevent extension of the low density structures to the deep. The models in the starting 
population are randomly scattered around the assumed background density contrast (0 g/cm3) 
using Eq. 1. Since a model with larger structures and sharper boundaries is aimed, relatively higher 
misfit between observed and calculated data is expected. The modelling is stopped after 1000 
iterations and resulted with 1.38 mGal RMS misfit (Fig. 8b).

Plan views of the recovered models at z = 350 m using smooth inversion and PSO algorithms 
are provided in Figs. 9a and 9b, respectively. Several S-N slices from the recovered models are 
shown in Fig. 10 for smooth inversion and in Fig. 11 for the PSO algorithms. In the mentioned 
figures, density contrasts depicting the deviation from the assumed background density of 2.3 
g/cm3 are provided.

3D Euler decomposition, tilt angle map, and the recovered 3D models indicate SE-NW and E-W 
trending boundaries, coherent with the strikes of the known faults and the lineaments observed 
through the topography (Fig. 7b). In the tilt angle map (Fig. 7c), the location of the ES is viewed 
clearly as a zero ‘0’ anomaly at ~2 km south of Elvanpaşa town, however, 3D Euler solutions show 
only a few points in the direction of this fault. The ES is also observed in the recovered 3D models 
and shown in Figs. 9 to 11. In the figures, ES is imaged as passing through the south of the low 
density sediment fill, consistent with the general properties of the Sinanpaşa basin.

The 3D Euler solutions indicate a second fault (f1) in the north, passing through ~0.5 km south 
of the Elvanpaşa town, sub-parallel to the ES (Figs. 9 to 11). This fault is also evident from the 
tilt angle map (Fig. 7c) and corresponds to the southern boundary of the lowest anomaly values 
in the study area, observed in the north in Fig. 5. In the recovered models, the location of the 
f1 is observed to be approximately corresponding to the southern boundary of the Quaternary 
sediments. This fault is interpreted as a normal fault, responsible for the development of the 
inner basin area in the north.

The third feature, determined from the gravity data, is the nearly E-W trending fault (f2) in 
the southernmost part of the study area. This fault is clearly observed from 3D Euler solutions 
and also can be traced in the recovered models (Figs. 9 to 11). The N-S features determined 
between the faults f2 and ES are interpreted as connecting faults.

These results suggest that the horizontal boundaries are successfully determined using 
both 3D smooth inversion and the PSO algorithm. The smooth inversion model suggests a 
basin between the faults f2 and ES (Fig. 10). The area between these faults is located in an 
elevated area and the development of a basin structure is unexpected. The smooth inversion 
is also found to be unable to determine the depth of the low density sediments to the north 
(Fig. 10).
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Fig. 7 - Residual anomaly map of the region (a), 3D Euler deconvolution solutions for the gravity data (shown 
with black circles) overlaying topography map (b) of the study area, and tilt angle calculations (c). The digital 
elevation model of the study area is produced by NASA/METI/AIST/Japan Space systems and U.S./Japan ASTER 
Science Team (2009).
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Fig. 8 - Calculated data for the models recovered using 3D smooth inversion (1 RMS) and PSO with Gaussian and Per-
centile filters (1.38 RMS) are given in (a) and (b) respectively.

The model recovered using the PSO algorithm with Gaussian and Percentile filters shows 
a picture better complying with the regional constraints (Fig. 11). Considering the geology of 
the Sinanpaşa basin, described in Akıska and Varol (2020), high density area (dρ > 0.2 g/cm3) 
underlying low density rocks throughout the model is interpreted as the Paleozoic basement 
rocks. The regions with 0.1<dρ< 0.2 g/cm3 determined over the basement are interpreted as 
limestones and marbles.

In the model, the effect of the normal component of these faults are observed through the 
step-like changes in the basement topography, which are especially evident in the sections taken 
from the middle part of the model (Fig. 11, x = -1, 0, 1, 2). The PSO algorithm also provided a 
better estimation for the sedimentary thicknesses. Accordingly, Miocene sediments overlying 
the high density basement in the south are determined to be ≤ 800 m thick and the lower 
density basin fill in the north is imaged with a thickness of ~1 km. The sediments in the south are 
recovered with relatively higher densities (dρ = 0 g/cm3), which is consistent with the existence 
of Miocene volcanic and clastic rocks, while the lower density values determined in the north 
reflects the contribution of the Quaternary sediments.
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Fig. 9 - Plan view of the recovered model from 3D smooth inversion (a) and PSO modelling scheme (b) at z = 350 m. 
Prominent faults and lineaments interpreted from 3D Euler solutions (black circles) and tilt angle map (Fig. 7c) are 
shown with purple lines.

6. Summary and conclusions

In traditional inversion, smoothness of the boundaries between different geological 
structures is often tweaked to adjust the resulting misfit. However, properties of boundaries 
should be introduced into the modelling process as a priori information, based on the geology. 
In order to obtain 3D gravity distribution models while providing better control on the boundary 
properties, a PSO algorithm employing low-pass Gaussian and Percentile filters is developed. 
The implementation of these low-pass filters eliminates high frequency changes, increasing 
the interconnection between the neighbouring model parameters and reducing the time 
consumption of the algorithm.

Among these filters, low-pass Gaussian filter is applied to obtain smoothly varying model 
parameters. When models with lower smoothness are wanted, Percentile filter can be applied 
to increase the necessary interconnection between the model parameters while keeping the 
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Fig. 10 - Cross-sections of the 3D smooth inversion model (1 RMS), taken at x = -3, -2, -1, 0, 1, 2, 3, and 4 km in S-N 
direction. Locations of the faults are shown using arrows. ES: Elvanpaşa segment.

Fig. 11 - Cross-sections of the 3D PSO model (1.38 RMS), taken at x = -3, -2, -1, 0, 1, 2, 3, and 4 km in S-N direction. 
Locations of the faults are shown using arrows. ES: Elvanpaşa segment.
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boundary information. The Percentile filter also can introduce a bias into the model parameters 
towards higher or lower density contrasts according to the chosen percentile value. The 
parameters of the Gaussian and Percentile filters are adjusted by trial and error to obtain models 
obeying geological constraints.

Initial tests on synthetic models show that the algorithm manages to minimise observed-
calculated data misfit and provide models with better defined boundaries. Then, the algorithm 
is implemented on the vertical gravity data set collected on a grid with 250-m intervals in the 
western part of the Sinanpaşa graben in Turkey. For comparison, the data set is also evaluated 
using tilt angle, 3D Euler deconvolution, and 3D smooth inversion methods.

The tilt angle and 3D Euler solutions are observed to be indicating three main faults. The 
fault shown with f1 in Figs. 9 to 11 is observed to be forming the southern boundary of the area 
with the lowest density values. This fault is interpreted as a normal fault, controlling the inner 
basin area with low density Quaternary sediment fill. In the south, the fault f2 is observed to 
be bounding the area with the highest density values and forms the southern boundary of the 
Miocene volcanic units. This fault is observed to be converging to the ES to the east. These faults 
are also observed as horizontal boundaries in the smooth inversion and PSO models, showing 
that the horizontal boundaries are recovered successfully by the both methods.

Smooth inversion result suggests a basin area between the faults f2 and ES, which is not 
supported by the known geology of the area (Fig. 10). On the contrary, this basin is not recovered 
in the model obtained through the PSO algorithm. In Fig. 11, this area is imaged as Miocene 
sediments with a thickness of less than, or equal to, 800 m, overlying high density basement 
structure, and the faults f2 and ES are obtained as normal faults with observable hanging and foot 
walls. Smooth inversion result also suggests sedimentary thicknesses exceeding a 2-km depth in 
the north, which also contradicts the known geology. When the result of the PSO algorithm is 
considered, the thickness of these units are observed to be ~1 km, which agrees better with the 
geological characteristics of the area of investigation.

Both synthetic and field data implementations of the PSO algorithm show that the method 
benefits from the use of Gaussian and Percentile filters to obtain geologically consistent 
models with well-defined boundaries, avoiding problems of smooth inversions. The ease of 
implementation of these filters to control model properties also gives the freedom of using the 
same global optimisation algorithm for a wide range of problems, including smooth and sharp 
boundary modelling, by only changing the filters to be applied.
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