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ABSTRACT Depth estimation of gravity anomalies is one of the most important geophysical 
problems in the exploration of mineral deposits. In the present paper, we try to 
estimate mass anomaly depth by using an artificial intelligence method called the 
Centred-Progressive Particle Swarm Optimisation (CP-PSO) with sample shapes such 
as a sphere, horizontal cylinder and vertical cylinder, which simulate the shape of most 
causative bodies. Using an artificial intelligence method is common for the case in ore 
bodies detection and delineation. When modelling gravity data, we estimate the depth 
and shape factor; therefore, we suppose depth (z) and shape factor (q) as particles in this 
algorithm. This technique was tested for synthetic models contaminated with random 
noise and the results are quite acceptable and promising. The proposed method was 
also successfully applied to real mineral exploration data. The desired location is near 
one of the outcroppings of the Safo manganese mine located in north-western Iran. 
The results show that the estimated depth and the shape factor model were in good 
agreement with the results obtained through the Euler method and drilling.

Key words: nonlinear inversion, simple geometric bodies, depth estimation, global optimisation methods, 
CP-PSO algorithm.

1. Introduction

Inverse modelling is the optimisation process of finding a model that is best-fitted to measuring 
gravity data on the Earth’s surface by minimising the error function. The main purpose of solving 
these kinds of problems is to make information on the internal structure of the sources available. 
Non-uniqueness of the solution is the fundamental complication in solving these problems 
(Barbosa and Joao, 1994). Other extra information related to the model parameters (subsurface 
structures) or data parameters (statistical properties such as the Gaussian distribution) can be 
used to solve this complication (Jackson, 1979; Montesinos et al., 2005). In the inverse modelling 
of gravity data, two different operators exist to determine the model parameters. In the first 
case, if the goal is to determine the density distribution, the geometry must be assumed to be 
constant and a linear operator must be used. In the second case, if the goal is to determine the 
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geometric parameters of the source, the density contrast must be assumed to be constant, and 
a nonlinear operator must be used. Approximations, such as the Taylor expansion, may be used 
to turn this system into a system of linear equations (Menke, 1989; Montesinos et al., 2005). 
Global optimisation methods should be used for gravity inverse problems that include several 
local minima (Fernández-Martínez et al., 2012). In addition, prior information can be used when 
using these methods to solve problems (Snopek, 2005).

Using random algorithms instead of deterministic algorithms can prevent trapping in the local 
minima. Moreover, random algorithms are less dependent on primary assumptions.

Monte Carlo sampling methods, one of the oldest global optimisation methods based on 
random movements, were first used by Keilis-Borok and Yanovskaja (1967) for solving inverse 
problems of geophysics. Since the Monte Carlo method is very time consuming, researchers 
have developed various search methods for global optimisation to reduce the optimisation time. 
Particle swarm optimisation (PSO) is a new optimisation method that has attracted increasing 
research interests due to its simplicity and efficiency.

Yuan et al. (2008) applied ant colony optimisation (ACO) to solve the nonlinear geophysical 
inverse problem. They also presented a performance comparison of ACO with a genetic algorithm 
(GA) and simulated annealing (SA). Their results showed that the ACO method has the properties 
of higher speed of convergence and accuracy.

The PSO method has been applied by Fernández-Álvarez et al. (2006), Shaw and Srivastava 
(2007), and Fernández-Martínez et al. (2010a, 2010b).

Fernández-Martínez et al. (2010a) also applied the Generalised PSO (GPSO), Centred-
Centered PSO (CC-PSO), and Centred-Progressive PSO (CP-PSO) to the solution and appraisal of 
a one-dimensional direct current resistivity inverse problem.

A full family of PSO was applied to the 2D/3D gravity inversion and model appraisal of 
basement relief in sedimentary basins by Pallero et al. (2015, 2017).

This paper aims to estimate the depth and shape of gravity anomalies with simple geometry, 
such as a sphere, horizontal cylinder and vertical cylinder, using CP-PSO algorithm.

2. Nonlinear inversion method of gravity data

In general, the gravity acceleration can be obtained from the following equation (Blakely, 1995):

(1)

where  is the universal gravitational constant, R is the volume occupied by 
the mass anomaly, P is the observation point outside of R and located at (x, y, z), Q is the point 
of integration  within R, and r is a vector directed from Q to P that is written as follows:

(2)

 has the usual meaning of density.
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We can write Eq. 1 as follows:

(3)

where

(4)

is a function that depends on the location of the measurement point (P) and underground 
source (Q).

Then,

(5)

The forward modelling problem is indeed calculating  by obtaining the values for , 
 and R volume. In the inverse problem,  is a definite value and the unknowns are

 and . If  is unknown, the problem is linear and if  is unknown, the 
problem is nonlinear.

Eq. 5 is difficult to solve for geologic situations with complicated geometric shapes. Therefore, 
we must divide the hypothetical gravitational sources into N simpler parts and convert Eq. 5 into 
something like:

(6)

where  represent the vertical attraction at the m-th observation point,  is the density of 
part n, and  is the gravitational attraction at point m due to part n with unit density.

2.1. Forward model

The general new formula of a two-dimensional gravity anomaly with sample shapes such as 
a sphere, horizontal cylinder and vertical cylinder, along the profile over the body was summed 
by Essa (2010):

(7)
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where J(0) is the value of the anomaly at the origin xi = 0, z is the depth of the anomaly 
(m), xi is the horizontal coordinate (m), and q is a factor roughly related to the shape factor 
(dimensionless) whose values for the sphere, horizontal cylinder and vertical cylinder, are 1.5, 
1.0, and 0.5, respectively.

We want to use observational data to estimate the depth and shape factor of the mass 
anomalies. Therefore, according to Eq. 6, if J(xi, z) is a definite value and z and q are unknown, 
then, the problem is nonlinear.

2.2. CP-PSO, a family of Particle Swam Optimisation algorithms

The PSO algorithm was proposed by Kennedy and Eberhart (1995). At first, it was used to 
simulating the social flight of birds, but after primary algorithm implementation observations, 
it has been applied for solving other optimisation problems. In this type of optimisation, each 
solution will be a bird in the space that is called a particle. Each particle has a significant value 
that is measured by a fitness function. In this modelling, the closer the particle is to food the 
better. Also, each particle has a velocity that is responsible for guiding the motion of that particle. 
This kind of collective artificial intelligence method is based on social psychology principles, 
which have many applications in computer science and other sciences. In the PSO algorithm, the 
collection of answers is called a swarm, and each answer is considered like a bird in a group of 
birds and is called a particle. Each particle contains an amount of competency that is calculated 
using the competency function. The direction of motion of the particles is determined by their 
velocity.

The PSO algorithm consists of three stages: initialisation, iteration, and termination criterion. 
In the first stage, the population is initialised and randomly distributed in the search space. In 
the iteration stage, the velocities and positions of the particles are updated by Eqs. 8 and 9, 
respectively. The velocity equation in PSO is (Kennedy and Eberhart, 1995):

(8)

with

where  is the i-th position of the particle in the k-th iteration and  is its velocity in the k-th 
iteration.

The best position of particles is represented by  and the best position discovered 
from all particles , is known as the global best position .

c1 and c2 are two positive constants that indicate the relative influence of the social components 
and cognition, respectively. w is the inertia weight that provides a balance between local exploitation 
and global exploration, and r1 and r2 are random real values in an interval [0, 1]. The velocity of the 
particles on each dimension is bound by the range [ ], and the position equation is:

(9)
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If the completion criterion is met, the algorithm creates the best solution. Otherwise, the 
iteration process continues.

Inertia, local and global accelerations are parameters for tuning PSO.
w is the inertia weight that regulates the trade-off between local exploitation and global 

exploration. It was initially constant. However, Shi and Eberhart (1998) indicated that better 
results are obtained if an initial large value is considered for the inertia, in order to promote 
global exploration of the search space then gradually decrease it to obtain local exploitation.

Kennedy (1998) proposed values of c1 = c2 = 2 but experimental results showed that c1 = c2 = 0.5 
achieved better results. Carlisle and Dozier (2001) achieved better results by choosing a larger 
cognitive parameter, c1, than a social parameter, c2, provided that c1 + c2 ≤ 4. Perez and Behdinan 
(2007) report that a particle swarm is stable only if the following conditions are satisfied:

(10)

If the mentioned conditions are satisfied, the system is guaranteed to converge to a local 
optimum value.

In this paper, we applied the CP-PSO algorithm that is fully described in the Appendix.
Modelling of gravimetric data using CP-PSO can be described as follows:

1 -  we determine the main parameters related to CP-PSO. In this paper, we have considered 
the number of particles to be 50 and the maximum number of repetitions to be 50. In this 
problem, two parameters of depth and shape factor were considered as particles in the 
framework of the CP-PSO method;

2 -  the initial population of particles in the range of motion of the input parameters is randomly 
generated in the search space;

3 -  each particle calculates the value of the objective function corresponding to its position in 
space according to:

(11)

where  is observational data and  is predicted data by using CP-PSO algorithm; 
4 -  each particle identifies  and  according to its current position and the position 

of other particles;
5 -  each particle selects a direction to move using a combination of the information in accordance 

with Eqs. 8 and 9;
6 -  after performing the massive movement, one step of the algorithm is finished;
7 -  steps 3 to 5 continue until the last iteration of the optimisation algorithm is reached;
8 -  as the optimisation process converges, the optimal point is found.

All modelling and optimisation steps have been prepared by the authors in MATLAB software.
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3. Synthetic examples

The proposed method was then used to study numerical examples. Sample shapes such as a 
sphere, horizontal cylinder and vertical cylinder, were selected to demonstrate the effectiveness 
of this technique. Synthetic models are contaminated by 3, 5, and 7% random noise. The CP-PSO 
swarm composed of 50 particles explored the search space with 50 iterations. The proposed 
method was then used to calculate the depth and shape factor.

3.1. Synthetic model: sphere

The synthetic model is a sphere with a density contrast of 500 kg/m3, a depth from its centre 
to the Earth’s surface of 6 km, and a radius of 3.5 km. Using this model, we have generated 
synthetic gravity data contaminated by 3% random noise. The CP-PSO has to solve a two-
dimensional inverse problem: shape factor and depth of anomaly. Fig. 1 shows the gravity effect 
of the sphere at a depth of 6 km. In this case, we repeated the algorithm 200 times to reach an 
answer.

It is important to highlight that CP-PSO does not use an initial model but rather adopts 
models based on the prior information given in the search space. The initial swarm is generated 
randomly in the search space. CP-PSO is able to obtain a set with all models (called equivalent 
models) that predict the observed data with a relative misfit lower than a given tolerance.

Fig. 2 shows histograms of each parameter’s model [q, z], where q is a factor related roughly 
to the shape of the structure (dimensionless) and z is the depth of the anomaly (km).

In this case, we have used a swarm size of 50 particles and the algorithm ran 200 times.
These histograms were calculated according to the parameters of the equivalent models with 

an error misfit of less than 3%. The frequency distributions of the different parameters for the 
sphere show a wide range of solutions for q and z.

Fig. 1 - Gravity effect of a sphere at a depth of 6 km and a radius of 3.5 km.
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For the histogram related to the inverted model, the frequency distributi on of the shape factor 
is q = 1.47. Therefore, our method has esti mated the shape of the sphere with great accuracy. The 
esti mated depth is z = 5.9 km. To achieve these results, we employed the lower limits for the CP-
PSO algorithm of [qmin, zmin] = [0.5, 0.1] and [qmax, zmax] = [1.5, 30] for the upper limits.

Actual and CP-PSO-esti mated parameters for a spherical model are compared in Table 1.

Table 1 - Comparison of actual and CP-PSO-esti mated parameters for a spherical model.

Model parameters Actual value Lower bound Upper bound Esti mated parameters

Shape factor (q) 1.5 0.5 1.5 1.47

Depth (z) in km 6 0.1 30 5.9

Fig. 2 - Histograms of each parameter of the model for the equivalent models with an error misfi t less than 3%.

3.2. Synthetic model: horizontal cylinder (2D)

The syntheti c model is a horizontal cylinder with a density contrast of 650 kg/m3, a depth 
from its centre to the Earth’s surface of 43 and a radius of 8 m. Using this model, we have 
generated syntheti c gravity data contaminated by 5% random noise. Fig. 3 shows the gravity 
eff ect of a horizontal cylinder at a depth of 43 m. Fig. 4 shows histograms of each parameter’s 
model [q, z]. These histograms were calculated according to the parameters of the equivalent 
models with an error misfi t of less than 4%. The frequency distributi on of each model parameter 
(shape factor and depth) converges toward the actual value. For the histogram related to the 
inverted model, the frequency is q = 0.94. Therefore, our method has esti mated the shape of 
the horizontal cylinder with good accuracy. The esti mated depth is z = 40.3 m. To achieve these 
results, we employed the lower limits for the CP-PSO algorithm of [qmin, zmin] = [0.5, 10] and 
[qmax, zmax] = [1.5, 100] for the upper limits.
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Actual and CP-PSO-esti mated parameters for a horizontal cylinder model are compared in Table 2.

Table 2 - Comparison of actual and CP-PSO-esti mated parameters for a horizontal cylinder model.

Model parameters Actual value Lower bound Upper bound Esti mated 
parameters

Shape factor (q) 1 0.5 1.5 0.94

Depth (z) in m 43 10 100 40.3

Fig. 3 - Gravity eff ect of a horizontal cylinder at a depth of 43 m and a radius of 8 m.

Fig. 4 - Histograms of each parameter of the model for the equivalent models with an error misfi t less than 4%.

3.3. Synthetic model: vertical cylinder (2D)

The syntheti c model is a verti cal cylinder with a density contrast of 350 kg/m3, a depth from 
its centre to the Earth’s surface of 75 and a radius of 15 m. Using this model, we have generated 
syntheti c gravity data contaminated by 7% random noise. Fig. 5 shows the gravity eff ect of a 
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verti cal cylinder at a depth of 75 m. Fig. 6 shows histograms of each parameter’s model [q, z]. 
These histograms were calculated according to the parameters of the equivalent models with an 
error misfi t of less than 6%. For the histogram related to the inverted model, the frequency is 
q = 0.5. Therefore, our method has esti mated the shape of the verti cal cylinder with great accuracy. 
The esti mated depth is z = 67.71 m. To achieve these results, we employed the lower limits for the 
CP-PSO algorithm of [qmin, zmin] = [0.5, 30] and [qmax, zmax] = [1.5, 150] for the upper limits.

Actual and CP-PSO-esti mated parameters for a verti cal cylinder model are compared in Table 3.

Table 3 - Comparison of actual and CP-PSO-esti mated parameters for a verti cal cylinder model

Model parameters Actual value Lower bound Upper bound Esti mated 
parameters

Shape factor (q) 0.5 0.5 1.5 0.5

Depth (z) in m 75 30 150 67.71

Fig. 5 - Gravity eff ect of a verti cal cylinder at a depth of 75 m and a radius of 15 m.

Fig. 6 - Histograms of each parameter of the model for the equivalent models with an error misfi t less than 6%.
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4. Field example

Finally, we applied this algorithm to a real dataset from the Safo manganese mine. The mine 
is located in the NW of Iran, 25 km north of Chaldoran. The natural positi on of the area relati ve 
to the city of Maku is shown in Fig. 7.

An extensive geological report of the menti oned area was made available by the Espeer 
company. According to the informati on available in the report, the dominant texture of the 
region is Khoy-Mako ophiolites. In this area, the Lower Cretaceous sediments are composed 
mostly of Orbitolina limestone and are located with transformati on upon Jurassic sediments. The 
main outcrop on the site is made up of pelagic limestones with crags of gray to black manganese 
deposits. The desired locati on is around one of the outcrops of the Safo manganese mine and is 
located in a rectangle whose SW corner has the coordinates 438276 and 4342971 and whose NE 
corner has the coordinates 438609 and 4343187 (image system UTM). However, less gravimetric 
data has been harvested from the north-eastern corner of the network due to the topographic 
confi gurati on in this area.

Data were acquired using a Scintrex CG3 gravimeter with an accuracy of 5 μGal including about 
604 stati ons at 5 to 10 m intervals along with profi les with a distance between them of 2.7 m.

In order to correct the drift  in the gravity measures, the amount of g is measured in a base stati on 
every two hours. A profi le perpendicular to the anomaly mass was selected to esti mate the depth of 
the mineral in this range and the depth was esti mated by the method presented in this paper.

Fig. 7 - The natural positi on of the area relati ve to the city of Maku (source: Google Earth).
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Fig. 8 is observed gravity and Fig. 9 shows the Digital Terrain Model (DTM). Terrain correcti on 
has been carried out through Geosoft  Oasis Montaj7 using a 5 to 5 m digital terrain model and is 
shown in Fig. 10. Fig. 11 is the residual Bouguer anomaly map of the Safo manganese mine and 
the profi le length is marked by a black line on the fi gure. The value of the used density is 2.4 g/cm3. 
To esti mate the minimum depth of this anomaly, the Euler deconvoluti on method is used and 
the results are shown in Fig. 12.

Fig. 8 - Observed gravity.

The Euler depths are computed by the following equati on (Thompson, 1982):

(12)

where x0, y0 and z0 are the coordinates of a point of the underground source and N is the structural 
index.

As can be understood from Fig. 12, the minimum depth of the Safo manganese mine 
is from 5 to 25 m. Therefore, we set the range of z between 1 and 100 m. According to the 
dimensions of parti cles, which include the geometrical parameter and the depth of gravity 
anomaly, the lower range is in the range [qmin, zmin] = [0.5, 1] and we consider the upper limit 
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Fig. 9 - Digital Terrain Model (DTM).
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Fig. 10 - Terrain correcti ons.

Fig. 11 - The residual Bouguer anomaly map of the Safo manganese mine.
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[qmax, zmax] = [1.5, 100]. Fig. 13 shows the observed and predicted residual gravity anomaly of 
the Safo manganese mine. Fig. 14 shows histograms of each parameter model [q, z]. These 
histograms are calculated according to the parameters of the equivalent models with an 
error misfi t of less than 4%. For the histogram related to the inverted model, the frequency is 
q = 0.81 and z = 24.03 m.

As can be seen in Fig. 11, there is an obvious mineral elongati on in the N-S directi on. Simple 
models such as a sphere, horizontal cylinder and verti cal cylinder, may not be geologically 
realisti c but are usually suffi  cient to analyse many sources of isolated anomalies (Abdelrahman 
and El-Araby, 1993).

The Euler deconvoluti on method is used to esti mate the minimum depth of this anomaly 
and the results are shown in Fig. 12. From this fi gure, it is observed that the western wall of the 
anomaly is located at a minimum depth of approximately 5 to 10 m and the eastern wall of the 
anomaly is located at a minimum depth of approximately 10 to 20 m.

 The esti mated shape and depth of the surface anomaly are also in good agreement with the 
drilling results. One of the advantages of global opti misati on methods is to obtain the uncertainty 
of the obtained models. With att enti on to random processes in model upgrades, a new model 
that is somewhat diff erent from the previous model, is obtained with each run of the program. 
In this paper, the uncertainty in real data was obtained by running the CP-PSO algorithm 50 ti mes 

Fig. 12 - Esti mated depth by Euler deconvoluti on method (m).
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and results were obtained in 50 diff erent models. Fig. 15 shows the percentage of relati ve misfi t 
and the swarm dispersion with the number of iterati ons. As can be seen in the fi gure, the misfi t 
rapidly decreases with the iterati ons and its exploratory behaviour can be observed in iterati ons 
47 and 50 where the misfi t increases and is higher than 20%. Global Search (Explorati on) means 
the ability of the algorithm to explore diff erent areas of the search spaces. The dispersion swarm 
in Fig. 15 shows that it is never lower than 4%. Fig. 16 shows the percentage in equivalent models 
with the considered percentage of error misfi t. We found that more than 56% of the inverted 
models or 1407 models had an error misfi t of less than 5% and that percentage increased to 
around 76% of the inverted models or 1924 models if the error misfi t was increased to 10%.

Fig. 13 - The observed and predicted residual gravity anomaly at the Safo manganese mine.

Fig. 14 - Histograms of each parameter of the model for the equivalent models with an error misfi t less than 4%.
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Fig. 15 - Percentage of relati ve misfi t and the swarm’s ability to explore in each iterati on.

Fig. 16 - Percentage of equivalent models with the considered percentage of error misfi t.

5. Drilling results

Fig. 17 shows the locati on of the explorati on range on the 1:250,000 geological map. Ten 
trenches and ten wells with a total area of 357 m2 and 21 m2 were drilled in this mine.

Fig. 18 shows the legend for the Safo manganese explorati on range that was prepared based 
on fi eld surveys and thin secti on studies.
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The exploration program has led to the identification of five indices containing minerals (a 
total of 14 mineral patches) in different areas of the range. The specifications of these indices, 
labelled with codes A, B, C, D, and E are shown in Table 4.

Table 4 - The specifications of mineralised areas detected during the preliminary exploration phase.

Mineral Reserve
(ton)

Area

(m2)

Outcrop 
dimensions

(m2)

Mineral 
patches

Geographical coordinates

Height level
(m)

Mineral 
Indices Latitude

(DMS)
Longitude

(DMS)

221363035×18A1
39° 14’ 22.8”44° 16 ‘ 15”2200A

264397565×15A2

4516262525×25B1

39° 14’ 06”44° 17’ 12”2220B
22422515×15B2

-22515×15B3

-10217×6B4

80340020×20C1

39° 14’ 02.5”44° 17’ 19.2”2220C
162110515×7C2

97710217×6C3

-4812×4C4

18414070×2D139° 14’ 14.4”44° 16’ 46.2”2210D

2781

20080×2.5E1

39° 14’ 14.4”44° 17’ 47.4”2220E 6040×1.5E2

12550×2.5E3

Finally, after performing the final calculations to determine the mineral reserves in this 
section, 56,608 tons of mineral with an average grade of 30.06% manganese (equivalent to the 
total content of 17,016 tons of manganese oxide) was estimated.

The minimum depth needed to calculate the amount of reserve for most patches is 5 m and 
at greater depths, the amount of reserves can reach up to 80,000 tons.

The mineral outcrop related to patch A1 is shown in Fig. 19.
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Fig. 17 - The locati on of the explorati on range on a 1:250,000 geological map.

6. Conclusions

In the present study, the CP-PSO algorithm was used to interpret the gravity data for a simple 
buried structure, such as a verti cal cylinder, a horizontal cylinder or a sphere. Using random 
algorithms instead of deterministi c algorithms can prevent trapping in the local minimums. 
Random algorithms are also less dependent on primary assumpti ons.

In this modelling, two parameters of depth and shape factor were considered as parti cles in 
the framework of the CP-PSO method and the maximum and minimum depth was used for the 
prior informati on. Like other inversion methods that overcome the non-uniqueness problem by 
constraints, we used depth and shape factor constraints for this purpose. The method was then 
tested for syntheti c models with random noise. The technique was also successfully applied 
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Fig. 18 - Legend prepared based on fi eld surveys and thin secti on studies for the Safo manganese explorati on range.

Fig. 19 - Mineral outcrop related to patch A1.
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to real mineral exploration data. The desired location was one of the outcroppings of the Safo 
manganese mine and located in north-western Iran. An anomaly identified at a depth of 24.06 m 
had a good fit with the drilling results.
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Appendix: The CP-PSO algorithm

The CP-PSO algorithm is one of the explorative members of the PSO family that Fernández-
Martínez and García-Gonzalo (2009) considered a PSO continuous model. Where the oscillation 
centre may be delayed at time t0 with respect to the trajectory xi(t):

(A1)

where:

In order to discretise the model A1, a centred discretisation in acceleration and velocity are 
used in Eq. A2:

(A2)

Replacing the finite difference schemes (Eq. A2) in the PSO continuous model (Eq. A1) 
Fernández-Martínez and García-Gonzalo (2009) arrive at the following relationship for the 
velocity: 

(A3)

then:
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(A4)

Taking into account that

(A5)

the following equations show the CP-PSO algorithm with delay t0:

(A6)

(A7)

For the CP-PSO algorithm, Δt = t0 therefore, the equations simplify to (Fernández-Martínez 
and García-Gonzalo, 2009):

(A8)

(A9)


