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ABSTRACT Due to the development of sampling facilities in the mining industry, the spatial 
reporting of data sets is increasing, more variables are being noted, and broader areas 
are being covered. Therefore, it is crucial to subdivide the study areas into smaller 
domains to clarify the computation of the different behaviour of natural phenomena. 
In the estimation of mineral resources, the process consists of partitioning the 
mineralised area into several domains defined by the ore grade differences. Defined 
domains can be considered as a clustering problem. Even so, non-spatial techniques 
of clustering do not guarantee the spatial continuity of geostatistical data sets. 
Multivariate spatial clustering methods must therefore be applied, which often indicate 
the specifics of spatial continuity and heterogeneity. As a result, the Geostatistical 
Hierarchical Clustering algorithm is proposed. The validation of the non-spatial and 
spatial clustering techniques is evaluated by a synthetic data set in which the acquired 
results highlight the necessity of applying the algorithm. The mentioned algorithm is 
used as a proper tool for automatic domaining in geostatistical data set estimation. 
Its effect on improving the results derived from the kriging estimator is analysed on 
the synthetic data set. Consequently, the Attribute Kriging algorithm is introduced for 
estimating mineral resources.
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1. Introduction

Classifying data sets in various scientific fields to simplify descriptions, design a regular route 
for indicating structural models of data sets and related interpretations, facilitate the sampling 
process, and provide an appropriate context for accessing more information, is imperative (Oliver 
and Webster, 1989). According to the increasing development and evolution of sampling facilities 
in the mining industry, the compilation of spatial data sets is increasing, taking into account more 
variables and covering broader areas. Therefore, it is often necessary to divide the study area 
into domains to evaluate various behaviours of natural phenomena, identify hidden structures, 
examine the underlying information, and simplify mineral resource modelling (Romary et al., 
2015). In the estimation of mineral resources, the general process means dividing the mineralised 
area into domains defined by the ore grade differences in the univariate domaining. While it 
is advantageous to provide an appropriate mineralisation model in the region, corresponding 
to geological facies, each of the considered variables indicates different spatial behaviour in 
terms of mean, variability, and spatial structure (Emery and Ortiz, 2004). The domaining often 
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regards the mineralogical classification. For example, high, medium, and low-grade domains are 
individually defined and analysed for each mineralisation unit, which is a time-consuming step 
in estimating mineral resources (Stegman, 2001). Besides, the domaining of mineralised regions 
solely using the ore grade does not consider the spatial continuity among adjacent domains, 
and the presence of no uncertainties on the boundaries by this univariate domaining implies 
decreasing estimation performance. A significant number of parameters should be combined to 
identify the domains in multivariate-domaining. Nevertheless, due to the number of qualitative 
and quantitative information, it quickly leads to a computationally complex problem. Fortunately, 
the number of domains is limited; however, the dependency among them and the reliability of 
each domain’s variables must be guaranteed (Emery and Ortiz, 2004; Romary et al., 2012).

Consequently, defining domains can be considered as a clustering problem. Clustering 
automatically classifies the mineralised region into homogeneous and independent clusters 
according to multivariate data sets. Nevertheless, traditional clustering approaches designed 
for independent observations do not guarantee the spatial continuity of the resulting 
clusters. Accordingly, to cluster geostatistical data sets that often show spatial continuity 
and heterogeneity behaviour in the study area, traditional clustering algorithms adapted to 
multivariate geostatistical data sets should be applied. Particular emphasis is given to procedures 
used to optimise traditional algorithms to apply the resulting clusters’ spatial contiguity effect 
(Romary et al., 2012, 2015). Clustering can be provided in a variety of ways, mainly dependent 
on similarity measures among the observations. The primary point is that the similarity of the 
attribute space does not guarantee a similar geographical space process. Therefore, in addition 
to determining these parameters in the attribute space, the geographical space’s similarity 
should also be considered. The location of observations belonging to a cluster should therefore 
be related to each other in the geographical space (Fouedjio, 2016a, 2016b).

Oliver and Webster (1989) were the first to propose a method for clustering geostatistical 
data sets: a method based on a traditional hierarchical clustering algorithm with an adapted 
dissimilarity measurement among observations to determine the spatial continuity of resulting 
clusters. They calculated the dissimilarities among observations by multiplying the stationary 
variogram and the stationary variogram of the first principal component of observations to 
the dissimilarity matrix in the univariate and multivariate cases. Hence, it leads to smoothing 
the dissimilarity of adjacent pairs of observations, obscuring boundaries between different 
clusters. Ambroise et al. (1995) proposed a method upon the Markov random field based on the 
Expectation-Maximisation (EM) algorithm. It can be applied to irregularly spaced data sets while 
locations of observations in the geographical space are structured by the Delaunay triangulation 
graph of the data sets, and edge weights of the graph are assigned uniformly. Allard and Guillot 
(2000) investigated a mixture of Gaussian random field-based clustering algorithms in which an 
approximation of the EM algorithm is used. This approach relies on the following assumptions:
1. the data set is assumed to be Gaussian, and observations belonging to each cluster are 

considered independent;
2. the algorithm requires calculating the maximum likelihood estimator (MLE) in each realisation 

of the EM algorithm, including the covariance matrix’s inversion.
Pawitan and Huang (2003) proposed two hierarchical and non-hierarchical clustering 

algorithms, which are spatially constrained. The constraint is structured by the Delaunay 
triangulation graph of the sample points, which lacks consideration of the lengths of the 
structure’s edges. Romary et al. (2015) proposed two spatially constrained clustering algorithms. 
The first is an agglomerative hierarchical clustering algorithm with complete linkage. The spatial 
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structure is based on the Delaunay triangulation, and the lengths of the edges are taken into 
account. The second algorithm is an alteration of the spectral clustering algorithm (von Luxburg, 
2007) to partition the same graph. Fouedjio (2016a, 2016b) proposed a geostatistically consistent 
agglomerative hierarchical method, while the similarity among observations is a function of 
spatial correlation. A Gaussian mixture model (GMM) approach is investigated by Madenova and 
Madani (2021) in order to obtain clusters in the practice of geometallurgical modelling, which 
provides the uncertainty of each observation to the clusters.

In this paper, the proposed clustering algorithm is performed by a ward-like hierarchical 
clustering method with spatial constraint, relying on a spatial structure of data sets and overall 
similarity among variables defined in the attribute space. Section 2 outlines the basics of 
clustering and kriging algorithms. Then, in Section 3, the efficiency of the algorithms is analysed 
and evaluated on a synthetic data set. Finally, using the clustering algorithm as a proper tool for 
automatic domaining, the proposed kriging algorithm is applied to the real data set of the Mehdi 
Abad lead and zinc deposit. According to the algorithm’s performance and results, it significantly 
improves the quality of the estimation in both synthetic and real data sets.

2. Methodology

The following section introduces K-Means, Hierarchical, Spectral, and the Geostatistical 
Hierarchical Clustering (GHC) methods. Further, determining the appropriate number of clusters 
based on the cluster’s intrinsic validation index, calculating the resulting clusters’ certainty, and 
the validation of clustering algorithms are also considered in this section. Finally, the GHC and 
the Attribute Kriging (AK) estimator’s association and the estimation validation procedure are 
demonstrated.

2.1. K-Means

Generally, the steps of the K-Means clustering method are as follows:
1. determining the centres of cluster number (k);
2. random selection of primary cluster centres (μ);
3. calculating the Euclidean distance between the random centres and the observations in 

pairs, designating the observations to the nearest selected centre, and finally assigning the 
designated observations to the clusters associated with the same centre;

4. calculating the clusters’ average values based on the observations within them in accordance 
with Eq. 1, and reproducing new clusters:

(1)

5. repeating the last two steps and calculating the error function value according to Eq. 2 after 
step 4 for the reproduced clusters; until the value of this function is fixed and reaches the 
minimum:
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(2)

where Cr corresponds to cluster r in which 1 ≤ r ≤ k and the size of Cr is equal to the number of 
objects within it while n represents the total number of observations and 1 ≤ i ≤ n.

2.2. Hierarchical

This method measures the dissimilarity existing among the clusters based on the dissimilarity 
between pairs of observations. The most popular variants are:
• single linkage: in this case, two separate Ci and Cj’ 

clusters are merged based on the minimum 
distance between the two elements P and P’ within them:

(3)

• complete linkage: in this case, two separate Ci and Cj’
 clusters are merged based on the 

maximum distance between the two elements P and P’ within them:

(4)

• average linkage: in this case, two separate Ci and Cj’
 clusters are merged based on the average 

distance between the two elements P and P’ within them:

(5)

Then, due to the results, a new cluster is built. This process goes so far when all observations 
are placed in one cluster. It should be noted that hierarchical clustering does not require 
determining the number of clusters in the early stages.

2.3. Spectral

The spectral clustering method classifies the data sets by modifying their primary structure 
and using other clustering methods such as K-Means to determine clusters. The basis of the 
mentioned method is the proximity of observations to each other, resulting in identifying 
complex and intertwined structures with a high separability due to modifying the structure. The 
steps of the spectral clustering method are as follows:
• calculation of the similarity matrix between observations (S) based on the Euclidean distance 

and, consequently, the proximity matrix estimation based on Delaunay triangulation (W ~ S);
• calculating the degree matrix (D) according:
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(6)

• estimating the Laplacian matrix:

(7)

• calculating k largest eigenvalues of the matrix L and determining the matrix F � Rnxk , so that 
the columns of the matrix are related to k number of the matrix L’s initial eigenvectors;

• normalising rows of matrix F;
• performing the K-Means clustering method on the matrix F rows and forming clusters C1, ..., Ck.
• assigning observations to the cluster in which row I of matrix F is located.

This method requires determining the number of expected clusters in the early stages. The 
stated method’s convergence becomes an optimisation problem based on selecting appropriate 
eigenvalues and the eigenvectors associated with them:

(8)

where I is the identity matrix, and Tr is the effect of the matrix.

2.4. Geostatistical hierarchical clustering

The primary purpose of the GHC algorithm is to provide concepts related to spatial continuity 
among observations. These concepts should be useful in adapting traditional clustering algorithms 
in order to provide geostatistical data-based approaches. In this case, a clustering algorithm 
considering the basic needs of mineral resource modelling projects can follow a smooth path 
to unsupervised classification and improve mineral resource estimation quality. The basis of the 
proposed algorithm generally consists of two steps:
1. spatial structuring is created by a graph function according to the observations’ spatial 

location set on various criteria and desirability of measuring the spatial similarity;
2. the use of adapted traditional clustering methods, while the mentioned structure controls 

the observations’ spatial continuity.
Consequently, the spatial similarity among observations leads to understanding the spatial 

interactions among the resulting clusters.

2.4.1. Spatial structure

The spatial structure of the data set is based on the observations’ adjacency in terms of 
geographical space represented in Fig. 1 by the graph function G, according to Eq. 9. If observations 
xi and xi’ are adjacent to each other, the corresponding value in the matrix [Gii’

] is equal to 1, 
otherwise 0. In this regard, 1 ≤ i, i ≤ N, i ≠ i’, and N indicates the total number of observations. 
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While the observations’ adjacency has already been controlled by the dissimilarity function (S) 
in Eq. 10 according to a normalised kernel function (α = 1), the higher the spatial dissimilarity of 
observations, the closer the corresponding value in the matrix [Sii’

] to 0; otherwise, it is closer 
to 1 (0 ≤ Sii’

 ≤ 1):

(9)

. (10)

So each observation connects to the optimal number of the most adjacent neighbours of its 
own in the geographical space. The optimal number is set according to the Rand index (RI) over 
neighbour number 1 to 100 for 1000 samplings.

Fig. 1 - Spatial structure of 800 observations based on 8 adjacent neighbours.

2.4.2. Overall dissimilarity

Given the spatial data (x1 ,  ..., xn) � Rnxp, n represents the number of observations, and p
represents the number of variables in the attribute space (j). As illustrated in Eq. 11, while j = 1,
2, ..., p, the dissimilarity (D) is calculated by the usage of the Euclidean distance (d) and the mean 
weights (w) of every attribute for each pair of the standardised variable in the mentioned space:

(11)

where Wj corresponds to the weights of each attribute. Thus, the summed weights used for 
variables must be equal to 1. Note that despite considering the dissimilarity of variables in 
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attribute space, dissimilarity in geographical space is also calculated by Eq. 11 as an independent 
parameter with proportional weight. The latter is added to the attribute dissimilarities, which 
results in an overall dissimilarity (D*). Due to the RI analysis, the mentioned proportional 
weight for K-Means and Hierarchical is 5 and 30%, respectively, which leads to improving the 
performance of these methods according to the synthetic data set. Moreover, it is 100% for 
Spectral and 0% for the GHC algorithm.

2.4.3. The adapted clustering algorithm

Non-spatial clustering is the core of the proposed spatial clustering algorithm based on 
hierarchical clustering using the Ward method as a distance measurement. This method is 
cumulative and uses two dissimilarity matrices to compute the dissimilarity of observations. 
The first one is obtained from the spatial structure, which affects the algorithm by the spatial 
continuity of observations. The overall dissimilarity matrix (D*), which is determined in 
the attribute space, is selected as the second dissimilarity matrix, affecting the algorithm by 
observation relationships in the attribute space.

The algorithm calculates the Ward distance (Wij) between the observations i and j:

(12)

where Dij is the value corresponding to the degree of dissimilarity between the two observations 
i and j, and n is equal to the number of observations.

Finally, Ward’s ultimate value (Wij) is reached:

(13)

where WG represents the Ward value calculated for the dissimilarity matrix obtained from the 
dissimilarity function S, and WD* refers to the Ward value calculated by the overall dissimilarity 
matrix. The value of α determines the importance of each input matrix, and its best value is a 
compromise between the loss of WD* and the gain of WG set up on the quality criterion of the 
clusters obtained with different values of α (0 ≤ α ≤ 1) performed by the function “choicealpha” 
from the “ClustGeo” package in R (Chavent et al., 2018).

2.5. Number of clusters

The Caliński-Harabasz (CH) index is selected to determine the appropriate number of clusters 
based on the cluster’s internal-external instability and variability (Caliński and Harabasz, 1974). 
Given different clusters k = 1, 2, 3,.., n – 1, the appropriate number of them is the one that 
maximises the CH index:

(14)
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The total variance among clusters B(k), and the total intra-cluster variance W(k) are calculated 
according to Eqs. 15 and 16:

(15)

. (16)

While yt � Rk is the vector corresponding to the t-th row of the matrix F, nm is the number of 
points in the cluster Cm and ȳm is the average of points in the cluster Cm, which is determined by:

(17)

and ȳ is the overall average:

. (18)

2.6. Clustering certainty

The certainty of observations is calculated based upon the matrix [Giiʹ] and [Siiʹ]. The 
procedure adopts the connection quality between observations, governed by the eligible 
number of neighbours estimated by the RI. The results of certainty for each observation are 
expressed as a degree of belonging to each cluster. For example, given two different clusters 
k = C’, Cˮ observations xi, xiʹ and xiʹʹ are connected according to the matrix [Giiʹ] and xiʹ � C�, 
xiʹʹ � C��. Therefore, this connection indicates 
that the observation i belongs to the cluster 
C� and C�� by an equal probability of 50%. 
Nonetheless, the mentioned probability should 
also be controlled by the spatial similarity of 
observations, hence, the matrix [Siiʹ] governs 
the last step. Therefore, the higher the spatial 
similarity among observations xi and xiʹ, the 
greater the probability of belonging the i to the 
cluster C�. Although the certainty calculates the 
probability of each observation belonging to 
the resulting clusters, it can be used as a proper 

Fig. 2 - A schematic of the red cluster certainty (the small-
er and darker the red observations, the lower the certain-
ty of the red cluster).
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tool to enhance clustering results at the boundaries. The low certainty observations relative to a 
cluster were removed from that cluster and assigned to another cluster with maximum certainty, 
which leads to correct misclassified observations.

2.7. Clustering validation

The validation of clustering methods is based on a synthetic data set. Thus, the variogram and 
RI validate the accuracy of the clustering methods.

2.7.1. Spatial validation

Using the variogram for each variable in predetermined domains in a synthetic data set, and 
comparing its parameters with the conclusions and interpretations of the variogram results in 
obtained clusters, leads to spatially validating clustering methods.

2.7.2. Rand index

RI is applied to estimate the clustering accuracy. The following parameters are calculated 
from clustering methods and predetermined domains in a synthetic data set:
• A: pairs of number of observations, labelled similarly in both the resulting clusters and 

predefined domains;
• B: pairs of number of observations, labelled differently in both the resulting clusters and 

predefined domains.
Therefore, according to Eq. 19, the RI is calculated so that the n is the number of observations:

. (19)

The closer the RI’s value to 1, the higher the accuracy of the clustering method (0 ≤ RI ≤ 1).

2.8. Kriging estimator

According to Eq. 20, the ordinary Kriging estimator is applied as a suitable tool to estimate 
the study area:

. (20)

Thus, ʎi represents the Kriging weights, Z(xi) is the variable’s value at the premeasured points, 
and Z(x0) is the variable’s estimated value. According to the spatial correlation between the 
observations defined as a variogram, kriging estimates the variables’ values at known coordinates 
using the same values in other points with known coordinates:

(21)
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where N(h) represents the number of pairs of points whose distance from each other is equal to 
h. Z(xi) and Z(xi+h) are regional variables with distance h from each other. The spherical model is 
used as an appropriate fitted model for variograms:

(22)

where C0 corresponds to the nugget effect value. The parameter C is the structure’s variance so 
that C0 + C represents the sill of the variogram and its range shown by a.

2.8.1. Estimation validation

Estimation Validation is derived from various methods, such as analysing primary and 
estimated statistics of the data sets and estimation variance. Also, cross-validation is used in 
each domain; five regions are randomly removed from the primary data set after estimating 
variables and re-estimated according to the estimation parameters. Finally, the correlation of 
the re-estimated and the primary data sets in the same regions are applied to determine the 
estimation’s validity.

3. Performance and results

3.1. Synthetic data set

The synthetic data set environment is a cube with 1-m sides in 3D space with a grid size of 
20×20×20 simulated in 3 variables. The smaller cube as the internal domain with sides of 0.5 m is 
located in the centre of this environment and covers the range of [0.25, 0.75] in directions X, Y, Z.

Fig. 3 - Predefined domains and the grid of synthetic data set.

The internal domain’s surrounding area is considered to be the external domain and covers 
the two intervals [0, 0.25) and (0.75, 1] in each direction. According to the grid, the internal 
domain includes 1000 points, and the external domain has 7000 points. Each domain’s variables 
are simulated separately using the Sequential Gaussian Simulation (SGS) method. Fig. 3 displays 
the environment.
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3.1.2. Variables

To generate the first variable in the internal domain, 100 random points have been used. The 
mean and standard deviation are both equal to 2. The spherical variogram model with variance 
1 and range 1 is applied. The same method with different parameters has been implemented on 
700 points for the external domain. Table 1 represents the parameters of each variable.

Table 1 - Simulation parameters of synthetic data set.

Variables Domain Mean Standard 
deviation

Variogram 
model Variogram sill Variogram 

range
Number 
of points

1
Internal 2 2 Spherical 1 1 100
External 0 2 Exponential 1 1 700

2
Internal 2 0.5 Spherical 1 0.25 100
External 0 0.5 Spherical 1 0.25 700

3
Internal 0 0 Spherical 1 0.5 100
External 0 0 Exponential 1 0.5 700

Fig. 4 - Generated variables in the synthetic data set and the histogram of each variable.
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According to Fig. 4, the first variable’s predetermined domains are not separated. So, there 
are overlaps in parts of the study area. Besides, the distribution of this variable does not indicate 
distinguished populations. The mentioned procedure challenges the clustering process. The 
second variable is considered the target variable. The histogram of this variable also does not 
represent the difference in populations entirely. Even so, the variable has not been generated 
in an intertwined way. The scattered and relative values of this variable in both domains can 
reduce the accuracy of the clustering algorithms. The third variable is simulated in both domains 
similarly and plays the role of noise in the clustering process, setting a significant challenge to 
the clustering procedure.

3.1.3. Number of clusters

The CH index is calculated according to 3 variables of the synthetic data set.

Fig. 5 - CH index of cluster numbers.

Fig. 5 presents the CH index based on the number of different clusters. Regarding the obtained 
results, 2 clusters with the CH value of 319.2 are specified as a suitable number of clusters.

3.1.4. Clustering procedure

In this section, the results achieved from the clustering of the synthetic data set are 
discussed. Firstly, the performance of the K-Means, Hierarchical and Spectral clustering methods 
are illustrated. The clustering process is applied to 10% of the standardised synthetic data set. 
Before analysing the results, the target variable’s variograms in predetermined domains need to 
be estimated. The mentioned variograms are implemented as a criterion for spatially validating 
the clustering algorithms in the next steps. Fig. 6 shows the results of the clustering methods, 
and Fig. 7 displays the average RI in the implementation of each clustering algorithm per 100 

CH
 in

de
x
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random samplings. The K-Means clustering method has not segregated the clusters practically 
due to the lack of spatial continuity, and it has significant sensitivity to the values associated with 
the attribute space. Increasing the spatial dissimilarity proportional weight (>5%) in the overall 
dissimilarity measurements reduces the method’s accuracy, so the best response is obtained 
considering a weight of 5%.

Fig. 6 - Clustering results of the synthetic data set performed by K-Means, Hierarchical, Spectral, and GHC algorithm.

On the other hand, the Hierarchical method has not effectively identified the internal and 
external clusters, and the lack of spatial continuity in the resulting clusters is apparent. This method 
is significantly sensitive to samples, so, in some sampling, it correctly classifies the observations 
and distinguishes the variables’ high and low values into meaningful clusters. Considering the 
appropriate spatial dissimilarity proportional weight (30%) improves the Hierarchical clustering 
quality. Next, clusters extracted from the Spectral method are more meaningful and efficient than 
the latter ones and almost reveal the hidden structure of the synthetic data set. However, even in 
this case, the lack of spatial continuity is observed in the study area. It is worth mentioning that 
the spatial dissimilarity proportional weight is 100%, which is a complementary parameter in this 
method’s overall dissimilarity measurement.
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Fig. 7 - The average RI of the clustering methods with the optimal dynamic neighbours per sampling for the GHC 
method.
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Finally, the clusters extracted from the GHC are significant, which reveal the hidden structure 
of the synthetic data set perfectly. According to Fig. 6, the resulting clusters’ spatial continuity in 
the study area is entirely apparent. The maximum value of the RI is 0.99, and the minimum value 
is 0.94. The index variance is 0.0001, and the standard deviation is equal to 0.01 (Table 2), which 
indicates the algorithm’s excellent performance. In this case, spatial structuring is calculated 
separately per sampling while the RI governs the optimal number of neighbours to estimate 
structures. These numbers are not necessarily the same for each sampling.

Table 2 - RI parameters of the clustering methods with the optimal dynamic neighbours per sampling for the GHC 
method.

GHCSpectralHierarchicalK-MeansRI parameters

0.970.930.910.89Mean

0.00010.00490.00490.0004Variance

0.010.070.070.02Standard deviation

0.990.990.970.94Maximum

0.940.670.590.80Minimum

Fig. 8 - The average RI of the GHC considering the optimal number of 58 neighbours.
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However, in real data sets, predetermined domains for estimating the RI to evaluate clustering 
performance are unavailable. Therefore, based on the synthetic data set’s random samplings 
and performing implementations of the clustering algorithm in different neighbours (1-100) 
per 1000 samplings, the neighbours’ optimal number is determined. According to Fig. 8, the 58 
neighbours represent the acceptable performance. Therefore, this number of neighbours is used 
to cluster the real data set.

Table 3 - GHC`s RI parameters considering the optimal number of 58 neighbours.

GHCRI parameters

0.93Mean

0.0004Variance

0.02Standard deviation

0.97Maximum

0.86Minimum

RI’s average is calculated over 100 samples by considering the optimal number of neighbours 
(58), represented in Fig. 8. According to Table 3, the RI’s maximum value, in this case, is 0.97, and 
its minimum is 0.86. The variance and standard deviation are 0.0004 and 0.02, respectively. The 
mean value of 0.93 indicates the proposed algorithm’s desirable performance.

Table 4 - Variogram-based spatial validation of clustering methods for Internal/External Domains.

GHCSpectralHierarchicalK-MeansPredefined

0.75 (0.78*)0.81 (0.77*)1.5 (0.71*)13 (0.65*)0.71 (0.78*)Sill (%2)
Range (m)

Nugget effect (%2)
0.11 (0.13*)0.14 (0.13*)0.69 (0.15*)7.5 (0.12*)0.09 (0.13*)

0.0 (0.17*)0.0 (0.2*)0.0 (0.22*)0.23 (0.16*)0.0 (0.18*)

* External domain

The spatial validation studies of the target variable in obtained clusters are based on the 
variogram results. The fitted model for the internal domain has a sill of 0.71, a range of 0.09, 
and a nugget effect of 0.0. The external domain’s parameters are equal to 0.78, 0.13, and 0.18, 
respectively (Table 4). Comparing the variogram results of predetermined domains and the 
resulting clusters illustrates their spatial continuity as expected. Thus, the GHC algorithm has 
the highest adaptation in the target variable’s variogram model in clusters and predetermined 
domains. Moreover, the variogram model parameters obtained in the Spectral method indicate 
the excellent performance of this method compared to the Hierarchical and K-Means clustering.

3.1.5. Certainty application

Fig. 9 shows the internal cluster certainty where smaller observations have a lower certainty 
while black observations belong to the external cluster. According to the RI’s average value, 
16 neighbours are selected to estimate the certainty of clusters. In addition to providing the 
concept of certainty, this tool can improve the algorithm’s results.
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Fig. 9 - The certainty of the internal cluster.

3.1.6. Ordinary kriging estimator

The process of the ordinary kriging estimator is performed on standardised samples and 
clusters obtained from the GHC algorithm in the following stages:
1. without domaining,
2. with domaining.

The results are analysed using cross-validation, the squares sum (SS) of the estimation variance, 
and the correlation between the estimation results and the primary values. In the first stage, the 
ordinary kriging estimator directly estimates the study area without considering the clusters. It 
should be pointed out that a grid with a size of 20×20×20 is used for the estimation procedure 
in the first step. In the second stage, the domains generated from the clustering algorithm are 
analysed separately. Therefore, clusters are estimated according to their variogram model, and 
the estimation grid is calculated individually for each domain.

Table 5 - Estimation validation for the second variable.

Correlation

Cross-
validation 
of external 

cluster

Cross-
validation 
of internal 

cluster

SS of 
estimation 

variance

Standard 
deviationMeanMin.Max.Data set

----10-3.114.72Original

0.720.680.5924610.79-0.001-2.543.90Estimated (1)

0.800.720.6516640.80-0.002-2.543.90Estimated (2)

As Table 5 reports, both stages have similar performance in estimating maximum and minimum 
values. The SS of estimation variance in the first and second cases is 2461 and 1664, respectively, 
which shows the second method’s superiority. The correlation between the estimation results 
and the primary values in the second stage has increased noticeably, which was equal to 0.72 
in the first case and has reached 0.80 with the domaining procedure’s aid in the second case. 
The results of cross-validation also guarantee the positive effect of domaining on the estimation 
process. Thus, cross-validation results on the second stage for internal and external clusters are 
equal to 0.65 and 0.72; plus, these values are 0.59 and 0.68 for the first stage.
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Fig. 10 - Estimation results of the synthetic data set for the second variable.

Table 6 displays the correlation between the estimation results and primary values for each 
variable, used as a suitable criterion for the estimation’s validation. The results demonstrate 
the superiority of the second method over the first method, and as is clear, the application of 
domaining by the GHC significantly improved the estimation results, especially in the internal 
cluster. It is worth mentioning that the low correlation of the third variable can be justified by 
considering the nature of this variable, which is considered noise.

Table 6 - Correlation of estimated and primary values for each variable.

Estimation methods 1 2 3

Estimation without domaining (1) 0.77 0.72 0.52

Estimation with domaining (2) 0.83 0.77 0.54

3.2. Real data set (Mehdi Abad deposit)

The Mehdi Abad lead and zinc deposits data set, extracted from drilling 56 boreholes, includes 
7757 cores with approximately 2 m in length. Samples consist of 6 variables, including the lead, 
zinc, silver, and X, Y, and Z values as the geographical coordinates.

The exploratory analysis and lithological studies of the study area constitute the basis of this 
selection. The following are the modifications done for the composite data set with a length of 1 m:
• the normalised value of coordinates,
• the normalised value of lead, zinc, and silver.

In this section, deposit domaining is implemented based on 3 clusters: low-grade, high-grade, 
and medium-grade. The results and statistics related to each cluster have been listed in Table 7. 
The red cluster is the low-grade domain that owns 3421 members, outlined by the low grade 
of lead (1.16%) and zinc (1.98%) located NW of the deposits. The green cluster is a high-grade 
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domain with 308 members distinguished by high-grade lead (4.31%), zinc (11.38%), and silver 
(166.22 g/t) located somewhere deep in the central part of the deposit. Finally, the blue one 
covers the medium-grade domain with 1.52% lead, 4.03% zinc, and 37.99 g/t silver.

Table 7 - Statistic parameters of variables for each cluster.

GHC
Red cluster (n = 3421) Green cluster (n = 308) Blue cluster (n = 4028)

Mean St. dev. Mean St. dev. Mean St. dev.

Pb (%) 1.16 1.25 4.31 2.92 1.52 1.37

Zn (%) 1.98 1.94 11.38 8.55 4.03 3.39

Ag (g/t) 33.75 31.30 166.22 121.58 37.99 37.64

Fig. 11 - Geological map of the Mehdi Abad deposit.
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Fig. 12 - GHC resulting clusters and their certainty (1st row), cluster grids and their certainty (2nd row), estimation 
results of zinc (3rd row).

As illustrated, Fig. 12 indicates the observations of each three clusters attained from the 
GHC algorithm and shows the position of the drilling boreholes; moreover, the visual view of 
each observation and cluster’s certainty is shown. The second row of this figure designates the 
designed grids and their certainty, which presents a complete overlap in the study area so that 
the sum of designed grids for each domain is equal to the grid of the whole mentioned area. It 
should be noted that the missing parts are not estimated, and the sides of each block are equal 
to 10, 10, and 5 m in the direction E-W, N-S, and the depth, respectively. Finally, the third row 
indicates the results derived from the estimation process in two steps:
1. without domaining,
2. with domaining.

Table 8 includes statistical parameters such as statistics of primary standardised values and 
estimated values, the estimation’s SS of the variance, and cross-validation results. As shown from 
this table, the estimation method utilising domaining in its procedure has better performance in 
estimating the maximum, minimum, and standard deviation. Even so, the outcomes of the cross-
validation highlight that the second method is superior compared to the estimation method 
without domaining. Note that the cross-validation has been calculated according to the whole 
data set. Indeed, all primary observations are removed, according to the attained parameters 
of estimating the study area; thereupon, the mentioned parameters estimate the removed 
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observations again in corresponding points. Ultimately, the correlation of estimation outcomes 
and the primary values are evaluated.

Table 8 - Validation of estimation results according to normalised variables of Zn, Pb, and Ag.

Cross-
validation of 
blue cluster

Cross-
validation
of green 
cluster

Cross-
validation of 
red cluster

SS of 
estimation 

variance
St. dev.MeanMin.Max.Data set

----10-0.97.74Original (Zn)

0.860.900.873.11e120.66-0.01-0.96.30Estimated_1 (Zn)

0.890.930.903.11e120.730.07-0.96.8Estimated_2 (Zn)

----10-0.9614.3Original (Pb)

0.700.660.703.12e120.68-0.02-0.953.73Estimated_1 (Pb)

0.760.700.793.07e121.03-0.25-0.969.32Estimated_2 (Pb)

----10-0.8316Original (Ag)

0.870.800.813.12e120.63-0.1-0.836.66Estimated_1 (Ag)

0.850.820.843.08e120.990.13-1.137.2Estimated_2 (Ag)

4. Conclusions

The proposed model-free GHC algorithm provides the spatial continuity of resulting clusters 
by considering the spatial structure built from the spatial similarity of observations. Coherent, 
meaningful, and spatially connected clusters extracted by the algorithm reveal the underlying 
and hidden structures of the data sets. The performance of the proposed approach on synthetic 
data sets compared to the K-Means, Hierarchical, and Spectral clustering algorithms confirm 
the superiority of the GHC. Moreover, resulting clusters of real data sets represent significantly 
meaningful domains. Besides, due to the algorithm’s hierarchical nature, it is possible to examine 
the clustering steps at different levels and provide multiple interpretations at each level. Also, 
with adequate knowledge of the nature of variables, it is possible to indicate their importance 
in classifying domains. Therefore, more effective clusters are derived from applying appropriate 
weighting for each variable. Hence, the Attribute Kriging algorithm provides acceptable 
performance in both synthetic and real data sets with the help of the GHC as an appropriate tool 
for automatic domaining of the study area. Attribute Kriging due to the basic needs of mineral 
resource modelling projects for domaining provides a smoother path to estimating mineral 
resources and brings more favourable results.

The GHC’s accuracy depends on selecting the optimal number of adjacent neighbours to 
achieve the data set’s most accurate spatial structure. Therefore, improving the spatial similarity 
calculation leads to determine the optimal number of adjacent neighbours to achieve the best 
possible results. The proposed clustering algorithm assigns observations to one and only one 
cluster. Thus, it cannot provide the uncertainty of each observation to the clusters. However, 
the certainty application presented leads to determine the certainty of boundary observations, 
which is also a proper tool for correcting misclassified observation. To enhance the certainty 
of clusters, one should investigate fuzzy clustering and model-based geostatistical algorithms, 
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although the latter usually fall short of properly establishing spatial continuity of the resulting 
clusters according to the literature.
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