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ABSTRACT 	 Large networks of fixed or mobile sensors based on Internet of Things technologies 
generate a large amount of data, that requires specific methods for preprocessing, 
averaging, interpolation and graphic representation. In this, bidimensional scalar data 
are taken into account; we consider the issues of window averaging, interpolation, and 
convex hull definition. The considered scenario is a fully automated, near real-time 
acquisition and visualisation system. The aim of this work is to compare the quality 
and the computational cost of various interpolation methods, while highlighting the 
possible risks behind the need to introduce experts’ choices in some of them. In 
this, some algorithmic optimisations and comparisons are presented, based on both 
simulated and real data. We present some software solutions for the problems of 
window averaging and buffering of the convex hull and some tests on interpolation 
methods like Inverse Distance Weighting and Natural Neighbours to determine which 
is the most appropriate for our real-time measurements.

Key words: 	 spatial interpolation, near real-time, geostatistics, convex hull, natural neighbours.

1. Introduction

The “near real-time” acquisition and representation of environmental data has become a 
topic of increasing importance, especially after the wide proliferation of IOT (Internet of Things) 
systems [see for example the applications to agricultural monitoring in Fastellini and Schillaci 
(2020)].

The expression “near real-time” is without any well-established definition, hence we will 
simply consider the case of a delay shorter than 5-10 minutes for the whole process of data 
acquisition, transmission, storage, processing, and visualisation.

When massive data acquisition is made through a network of sensors (e.g. fixed weather stations, 
IOT mobile devices, crowdsourcing systems) or during a field survey (e.g. research vessels), then 
data processing and rendering may raise several issues and caveats, well studied and documented 
in geostatistics and other long-established disciplines. Furthermore, in a near real-time environment 
there are even more aspects to consider, like the computational time and complexity of processing 
and technological issues like transmission systems, efficient data storage and retrieval, server-side 
software and client-side web rendering.

The final step of the whole dataflow is the mapping of the spatial data.
Analysis and representation of spatial data on a map is commonly implemented by means of 

a Geographic Information System (GIS). Modelling spatial data, or better pattern recognition using 
contour maps, is an important step for the interpretation of data themselves. Moreover, in real time 
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problems, along with the ever increasing use of new technologies, a huge need of methods of data 
visualisation and analysis in real time is emerging. An example, a typical case of near real time is 
the ShakeMap application in seismology, the tool to build maps of strong motion data soon after 
an earthquake, which needs an interpolation on a grid, using the seismic stations available data 
(Worden et al., 2010) and the empirical ground motion model (GMM). In meteorological monitoring 
(Hutchinson, 1998; Boer et al., 2001) a choice of suitable spatial interpolation is surely a key issue.

There are many methods of interpolation useful for real-time realisations. In general, we can 
distinguish two categories: deterministic and statistics methods. They are generally developed for 
interpolation on a regular grid, but not necessarily; there are methods that directly use triangulation 
between observed data points. The GMT package (Wessel et al., 2019) for example, widely used in 
geosciences, uses both approaches. The triangulation method is very fast, as the contour is done 
directly on the structure of the 2D distribution of the data, but this comes at the expense of the 
quality of the map. Conversely, interpolation on regular grid methods produce smooth maps. As far 
as quality is concerned, linear methods are very reliable, such as bilinear interpolation or Kriging. 
Defined as the best method for modelling the spatial uncertainty, or better defined the BLUE (Best 
Linear Unbiased Estimator), it is the basis of geostatistics (Goovaerts, 1997; Isaaks and Srivastava, 
1989; Wackernagel, 1998; Chilès and Delfiner, 1999), the theory based on the spatial correlation 
of data. However, this method needs preliminary data processing and various input parameters, 
making it not very easy to implement for real-time problems (e.g. Pebesma et al., 2011). Boer et 
al. (2001) used it to model monthly climate data. Also the most used method of GMT package, 
Spline in Tension has two arbitrary parameters: the tension (T from 0 to 1) and the search ray. 
By the modality of this parameter you achieve a (T = 0) biharmonic to (T = 1) harmonic function 
configuration (Wessel and Bercovici, 1976). This method was used in the old version of ShakeMaps, 
with arbitrary T value; actually the new version uses a conditional MultiVariate Normal approach 
[MVN: Worden et al. (2010)]: the assessment of the average of bidimensional distribution, in 
which a variable of interest is interpolated through mean and a deviation, with the conditional of 
another variable of observations. The deviation is a linear combination of variations depending 
on the source and the geological conditions (intrinsic in the GMMs). The Natural Neighbour (NN) 
method (Sibson, 1980) is a linear combination of observed data and weights, which are normalised 
intersections between areas of Voronoi polygons. The advantage of this method is that it does not 
require input parameters, but has a much more cumbersome software implementation, due to the 
tessellation that underlies it.

1.1. Background and objectives

The context we are considering is an acquisition system of low-cost environmental sensors, 
sending continuous measures of physical quantities such as water, air or soil temperature, 
pressure, relative humidity, carbon dioxide, ozone or particulate matter (PM10, PM2.5) levels. 
The measures are georeferenced at least with GPS WGS84 latitude and longitude and marked 
with an UTC timestamp. They are scalar, but many considerations can be easily extended to 
vectorial data. Similar considerations are valid for a lot of different quantities, like environmental 
noise, sun exposure, biological parameters as seawater chlorophyll or measurements such as 
traffic density.

We just assume to have availability of a massive flux of data, which is incoming to our server 
from fixed or mobile sensors, validated and stored in a database.

Many similar systems have been developed in recent years, based on IOT and low-cost 
sensors for air pollution monitoring, especially in large urban areas, for example by Parmar et 
al. (2017), Duangsuwan et al. (2018) and Dhingra et al. (2019). Near real-time data monitoring 
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is often implemented, whereas near real-time interpolation and mapping is far less common: a 
valid example can be found in Schneider et al. (2017).

Initially we want to represent our data only after some preprocessing like validation and 
window averaging. Subsequently, an interpolation of the samples will provide information in the 
whole acquisition region, not only in the sampling locations. There is a huge variety of distinct 
interpolation techniques, but we define two basic requirements to be met: the first requirement 
is the independence from human intervention, since the entire process should be an automated 
activity, running night and day on a server. In the second place, sufficient speed and an acceptable 
computational impact are needed. We want to test and compare two deterministic interpolation 
methods, IDW (Inverse Distance Weighting) and NNI (Natural Neighbour Interpolation).

We eventually define an area of confidence (boundary), preventing the map from showing 
interpolated data on distant regions, where the significance of the interpolation is too low. This is 
especially relevant when exposing data to a common audience, out of the scientific community, 
to avoid misunderstandings or acceptance of fake data as true.

Every result must be georeferenced and readily available on the server through an interactive 
web interface.

There are additional requirements, related to technological, economic or ethical aspects: the 
software environment must rely on open source protocols, programming languages and systems, 
e.g. a LAPP architecture (Linux - Apache - Postgres - PHP). Tailor-made coding with a high degree 
of flexibility and availability of scientific libraries suggests the use of Python (or similar languages, 
like R) with its standard calculus libraries (like NumPy, SciPy, etc.). Full GIS software like Surfer and 
Arcmap cannot be easily integrated into such an environment, because they are mainly designed 
for human interaction and only partially for automation and system integration. Moreover, they 
are commercial softwares (not open source), often available only for Windows and customisable 
only within given limits.

Lastly, the assessment of computational speed and performance requires the same conditions 
for all the algorithms: same hardware and same software environment. We compared Python 
programs with the same computer, data set and programming language.

2. Does automatic necessarily mean unbiased?

Since, as mentioned before, the system has to run unmanned, we wanted to understand the 
implications of such a choice; essentially whether such a system can be considered impartial, 
unbiased and not prejudiced. Comparing it, in fact, to other methods such as for example the 
Bayesian network, that generally is referred to as volitional and not automatic, can an automated 
method guarantee what is commonly called objectivity?

We understand that this largely depends on what we mean with the term objectivity. Several 
authors, such as for example Karsken (1992), Spade (1994) or Baise (2020), noticed that its 
meaning changed quite a lot from how we commonly use it now and has even been reversed by 
some thinkers.

Modern philosophy of science shows us that starting from the observation itself up to the 
theorisation phase, the standard scientific method is biased by several inconsistencies that 
undermine its traditional authoritative position. Cognitive penetrability and theory-ladenness 
perspectives stemming from the studies of Hanson (1958), MacPhersons (2012) and Zeimbekis 
(2013) maintain that there is no way to avoid that knowledge of x is biased by previous knowledge 
of x. In addition, following a path linking Duhem, Quine and Lakatos, once theories are built, they 
are not really questioned by tests; on the contrary, experiments themselves become only the 
projection of such theories. Science, then, becomes less logic and more socio-logic (Diviacco, 
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2012, 2014) as a network of supporters is necessary for a vision to exist (Whitley, 2000). Following 
Latour and Woolgar (1986), science is a social construct so that in this framework it is not easy to 
define what is unbiased. Methods that do not involve human intervention can, therefore, avoid 
introducing further arbitrariness but at the same time, since they cannot decontaminate the 
data, they process from the intrinsic cognitive penetrability and theory-ladenness data contain 
and their results cannot be considered unbiased.

3. Window averaging

Data collected from automated acquisition can be very copious and irregularly spaced. 
Furthermore, other issues must be considered:
a)	 too dense point clusters may raise computational issues during interpolation, like ill 

conditioned matrices or numerical precision errors, which are difficult to control;
b)	 when a physical quantity is measured there are statistical fluctuations, due to environmental 

causes or low precision of the sensor, especially in the special case of low-cost sensors, which 
are not relevant for the final user;

c)	 several physical quantities, like air temperature or humidity in a fixed location, are time-
dependent, but their variations are normally quite slow across the day;

d)	 a reduction of data set size before interpolation is very convenient in order to reduce the 
computational effort;

e)	 spatial and temporal data representation is more understandable if we show the aggregated 
data and not the single acquisitions;

f)	 in the particular case of crowdsourcing paradigm may be better to hide the individual location 
of the contributors and show only aggregated data, for privacy reasons.
Data aggregation based on moving window averaging (e.g. Isaaks and Srivastava, 1989) is 

a simple approach to deal with all these issues. We used an overlapping rectangular moving 
window, defined by a fixed reference grid, with 200×200 m2 cells, in combination with a time 
quantisation of one UTC hour. The spatial grid is based on the coordinate system WGS84/UTM 
zone 33N (EPSG:32633), well fitting for surveys in Italy and based on metric coordinates. A slice 
of data within one UTC hour (e.g. from 2020-01-01 14:00:00 to 2020-01-01 15:00:00) and one 
single grid cell is a datacube.

Of course, the choice of datacube’s size depends on the specific context. 200×200 m2 × 1 
hour is a reasonable option for the spatial and temporal resolution of air quality parameters like 
temperature or particulate matter, but the mechanism could be improved with an adaptive grid. 
Nevertheless, a fixed reference grid of datacubes has an advantage in terms of implementation and 
processing simplicity, visualisation conciseness and ease of representation of time evolving spatial 
phenomena. Besides, other statistical properties on the datacube are calculated, like the number 
of samples or the standard deviation.

In Fig. 1 the location of single samples acquired within one hour is shown. In Fig. 2 the cells 
after averaging (measure of atmospheric relative humidity) are displayed.

Wider time intervals were also considered (2, 4 ... up to 24 hours), for a better averaging of 
slow changing parameters, like PM10 pollutants.
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Fig. 1 - Sample points.

Fig. 2 - Averaged cells.
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3.1. Rectangular vs. hexagonal grids

Rectangular grids for window averaging are an obvious and rational choice, but other kinds 
of tessellation are possible, like the hexagonal grid. Hexagons are much less used than squares, 
primarily for their more cumbersome implementation, but, as well analysed by Birch et al. 
(2007), a ‘beehive’ geometry introduces some favourable characteristics.

Maps in a hexagonal grid tend to be less ambiguous than maps in a rectangular grid, 
especially in the corners. Rectangular lattices are also distracting because human vision is 
especially sensitive to vertical and horizontal lines and generally speaking the hexagonal grid 
should be preferred when it has advantages for the construction or representation of nearest 
neighbourhood, movement or connectivity.

We extensively implemented and tested hexagonal grids alongside rectangular grids, as 
displayed in Fig. 3. It is not easy to compare the computational effort required by the two 
methods, since it is very dependent on the software architecture. For instance, we chose to 
calculate and store the rectangular or hexagonal cells into a PostGIS database, as polygons. This 
operation is done only once, so it has no impact on further system performance. Later, PostGIS 
queries allow us to select points, which are contained in specific cells, through complex SQL 
operations. At this point, the cell geometry may affect the overall performance, simply because 
we are using either 4-side or 6-side polygons.

Fig. 3 - Hexagonal averaging grid.
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4. Deterministic vs. geostatistical interpolation

The issue of geospatial data interpolation may be addressed in several ways.
Generally speaking, we call X = {x1 ... xN} the set of interpolating points, corresponding to our 

measured values {f(x1) ... f(xN)}. We are looking for methods to calculate fINT(x) (interpolant) in a 
generic point x.

Function f(x) may be known or unknown. In case of measurement of a physical quantity, 
it is generally unknown. Interpolation is hence a problem of estimation. Interpolating points x 
beyond the range of X is called extrapolation and is subject to greater uncertainty, therefore it 
is necessary to define a reasonable interpolation domain surrounding X, a boundary. This issue 
will be addressed later.

A relevant subdivision of interpolation techniques is between deterministic and geostatistical. 
While the deterministic method uses directly a mathematical approach based on some spatial 
relation as distance between points (IDW, see below) or tessellation area (NNI, see below), the latter 
(for instance Kriging) relies on modelling the measures as realisation of a stochastic process Z(x), 
hence: fi = Z(xi); the former simply considers the spatial relationship between xi. In the geostatistical 
approaches (Wackernagel, 1998), the spatial relationship is realised by the variograms, statistical 
tools that allow to assess the spatial autocorrelation.

4.1. Inverse Distance Weighting interpolation (IDW)

IDW is a deterministic method, first introduced by Barnes (1964) and then resumed by 
Shepard (1968).

Assuming that {x1, ..., xN} are the interpolating points (data) and x a generic point, the 
interpolant is:

(1)

where the weights are:

(2)

A typical exponent range is 2 ≤ μ ≤ 4 for a smooth result, giving more influence to xk, which 
are closer to the interpolated point x. Here we chose the values 3 and 4.

Shepard’s method is very simple to implement, quite fast and produces more than acceptable 
graphic representations. It is used by many scientific analysis software, like Ocean Data View 
(https://odv.awi.de/) for fast rendering of interpolated spatial data in a marine environment, 
when heavier computational methods are not preferable (like DIVA interpolation, based on a 
finite element mesh).

IDW can be further improved assuming that, as locations get farther from the prediction 
location, the measured values have less spatial autocorrelation with the prediction location. Then, 
a search neighbourhood can be defined, eliminating from the calculus the samples outside a certain 
circular range. This technique also improves the computational impact, by reducing the number of 
samples used in the formula. The size and the shape (if not circular) of a search neighbourhood are 
parameters to adjust, along with the choice of an exponent, then requiring a human intervention 
or some adaptive algorithm.
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4.2. Natural Neighbour Interpolation (NNI)

A basic definition of a planar ordinary Voronoi decomposition is:

(3)

We call Voronoi polygon associated with xi the region given by:

(4)

Whereas the set given by:

(5)

is the Voronoi decomposition associated with set X (Okabe et al., 2000). Intuitively, every region  
contains all points, which are closest to xi than to every other point of set X.

Fig. 4 shows the Voronoi decomposition of a limited area.

     Fig. 4 - Voronoi decomposition.

NNI interpolation is based on a local interpolant, which represents the value of f(x*) in an 
arbitrary point x* as a weighted and linear function of the values f(xi) in the ‘nearby’ points xi

(6)

where wi are the weights, with wi ≠ 0 only for ‘nearby’ points.
Sibson (1980) used proximal Voronoi cells as a definition of ‘nearby’. As well described in 

Okabe et al. (2000), Sibson’s method defined the weight as normalised ratios between areas:
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(7)

where Ai is the area of V(xi) ∩ V(x*) (for the details see next paragraph), while ATOT is the area of 
the Voronoi cell relative to x*, as displayed in Fig. 5.

      Fig. 5 - Voronoi cell for the point of interpolation.

NNI aims to take into account clustering of data and distance of the interpolation from data 
via a geometrical (thus deterministic) approach, implying a linear decline of spatial correlation 
with distance.

4.3. Software improvement of the NNI algorithm

The Python module SciPy (scientific library for mathematics, science and engineering, 
based on Qhull library) includes all the tools for Voronoi and Delaunay decomposition. As we 
implemented the NN method, the first choice was to use this library (scipy.spatial.Voronoi) in 
two different steps:

a)	 just once for the initial Voronoi decomposition 𝒱, relative to our data set;
b)	 for every single interpolation point x*, when we need to compute the new Voronoi cell 

V(x*) and all its areas of intersections with 𝒱.
The first step has little impact on performance, because it runs only once. The second step 

can be critical. A straightforward implementation would be recalculating the whole Voronoi 
decomposition for every x*, simply adding x* to the set of points {xi}, just in order to find the 
new Voronoi polygon V(x*).

In effort to reduce the computation time for step b, a different algorithm has been developed 
and implemented, which does not use of SciPy library during step b and does not require any 
intersection to be calculated between convex polygons V(xi) ∩ V(x*).The method is based on the 
basic properties and definitions of Voronoi decomposition, as displayed in Fig. 6.

The objective is to find f*, the interpolated value in x*.
We assume that: xi are the samples; f(xi) are the measured values; Vi = V(xi) the Voronoi 

polygons.
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The core idea is a variation of the perpendicular bisector method (e.g. Isaaks and Srivastava, 
1989): for every Voronoi polygon Vi we find the perpendicular bisector between xi and x* (the 
point to be interpolated). We look at the intersection between Vi and the bisector h. If it is empty, 
then Vi is not a neighbour, else the intersection between Vi and the half-plane H (defined by 
the bisector) containing x* is exactly the partial area Ai needed for the NNI formula. Particular 
attention must be paid to degenerate cases where bisector h passes through one or two vertices 
of polygon Vi. In pseudocode:

ATOT = 0
f* = 0
for each Vi:
	 if xi = x* then END: f* = f(xi)
	 find xh = 1/2 (xi + x*) (middle point)
	 let h be the line orthogonal to segment xix*, passing through xh
	 for each edge sj of Vi:
		  if exists, find the intersection point between h and sj
		  a is the first one found, b is the second one
	 if a ≃ b or there is no intersection, then skip Vi
	 define the set P = {a, b}
	 let H be the half-plane defined by h and containing x*
	 for each vertex vj of Vi:
		  if vj ∈ H then add vj to the set P
	 order the points in P (vertices of a convex polygon)
	 Ai = area(P) is the partial area relative to xi
	 f* = f* + f(xi) / Ai
	 ATOT = ATOT + Ai

Eventually we can calculate the interpolated value as described above:
f* = f* / ATOT

     Fig. 6 - Improved NNI method.

Considering the distribution of the number of vertices for Voronoi polygons, which is Gaussian 
with an average value of 6 [at least in a Poisson Voronoi decomposition, see Okabe et al. (2000)], 
then the number of iterations and operations inside the external loop (over index i) is always 
limited. All the operations can be implemented as simple additions and multiplications.
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The time complexity order is therefore O(N), where N is the number of sample points xi and 
we may conclude that NNI can be implemented with a linear algorithm like IDW.

Interpolation methods like IDW or NNI, based on Euclidean distance d = sqrt(∆x2 + ∆y2) should 
not be directly applied on geographic coordinates (longitude and latitude <lon, lat>), which are 
anisotropic far from equator. This would bring inconsistent results also in a small geographic area with 
neglectable curvature, because ∆xm/∆ym ≠ ∆lon/∆lat, where <xm, ym> are some metric coordinates. 
The data must be first reprojected to a metric projection (e.g. UTM or Pseudo Mercator) and, 
then, interpolated. In the following example, we show a small data set with Voronoi decomposition 
and the additional Voronoi polygon relative to an interpolation point x*. The geometry of Voronoi 
polygons was calculated respectively after and before the reprojection. Fig. 7 shows an example 
of the difference between the two cases, which thereafter produces a significant difference in NN 
linear interpolation, with a different topology of Voronoi tessellation and different intersection 
areas. The IDW method has circular symmetry around data points, hence the difference between 
the two cases is a simple vertical stretch, because a circle of equidistant points becomes an ellipse. 

Fig. 7 - Dependency of Voronoi geometry on anisotropic coordinates.

Furthermore, if the data set covers a wide geographical area, we should also consider the 
curvature and a definition of distance on a spherical surface.

4.4. Kriging

Let us consider the stochastic process Z(x) and assume it is a Stationary Random Function 
(SRF). Defined its mean as the first moment:

	 m = E[Z(x)].	 (8)

We define as second-order moment, the covariance function (Chilès and Delfiner, 1999):
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	 cov[Z(x), Z(x+h)] = C(h) = E[(Z(x) - E(Z(x))) (Z(x+h) - E(Z(x+h)))].	 (9)

 If the process is second-order stationary, we can also assume E[Z(x)] = μ (constant mean) and 
the variance of the increments Var[Z(x) - Z(x+h)] to be finite and depending only on distance h 
(condition of isotropy). The correlation between Z(x) and Z(x+h) is a function named correlogram

	 ρ = C(h)/C(0).	 (10)

The covariance and the correlogram show how the correlation depends on distance h. The 
covariance is an even function and according to Schwartz’s inequality it is bounded by h at the 
origin (Chilès and Delfiner, 1999):

	 C(h) = C(-h)                 |C(h)| ≤ C(0).	 (11)

Hence we may define the theoretical semivariance, a second-order moment, function of h:

(12)

The semivariance is estimated through the analysis of empirical variogram:

(13)

where zi are the sampled values, separation distances are divided into bins h ± δ, and N(h ± δ) 
is the number of sample pairs with a distance included in each bin. By analysing γe, different 
parameters are estimated:

●	 variogram model: an equation fitting the empirical result
	 (most used are exponential, Gaussian or spherical, see Fig. 8);
●	 nugget: intersection of the curve with y-axis;
●	 sill: asymptotic height of the curve;
●	 range: distance (on x-axis) where the difference between curve and sill becomes 

negligible.

 Kriging is then defined as a linear estimator, where the unknown value z0 is estimated by a 
linear combination of the n data plus a shift parameter λ0:

(14)

Let us interpret the zi data values as outcomes of random variables Zi, and the unknown value 
to estimate z0 as outcome of a random variable Z0. To solve this equation we have to select the 
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constants  and the weights to minimise the error variance z0
*– zi , in sense of mean square . The 

minimum is ensured by the positive property of the covariance function that is a convex function 
(Chilès and Delfiner, 1999). The formula in matrix notation, in the case of Simple Kriging is

	 K λ = k0 ⟹ λ = K-1 ko.	 (15)

 If the data covariance matrix K is a positive definite matrix, this yields one and only solution. 
K and k0 are estimated using the variogram.

We may observe a few facts. First, Kriging is perfectly suitable for the interpolation of 
environmental measures and the literature about this method is abundant [an example is 
described by Tyagi and Singh (2013), who applied the method to PM10 data].

Second, the stochastic method of Kriging is difficult to implement as an automated procedure, 
and normally requires human intervention and analysis. Recently, interesting works were 
presented, which explore techniques of automated refinement of the variogram model, like in 
Barca et al. (2017), where the whole interpolation process is only partially unsupervised (e.g. 
Pebesma et al., 2011).

Nonetheless, deterministic methods like IDW or NNI are simpler choices for a fully automated 
implementation, relying only on the spatial properties of the samples.

Fig. 8 - Semivariance (variogram) models for Kriging.

In order to show how different can be the variograms, we used a data set of 648 measurements 
(acquired within one hour) and plotted the variogram for two different quantities: pressure (Fig. 
9) and PM10 (Fig. 10).

Range and sill exhibit different values, which need to be evaluated and normalised. In 
addition, the pressure diagram resembles a Gaussian model, whereas the PM10 diagram is 
better represented by a spherical model.
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Fig. 9 - Empirical variogram for pressure measures.

Fig. 10 - Empirical variogram for PM10 measures.
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Further considerations must be taken into account, like the use of anisotropic Kriging, where the 
variogram is not only a function of distance h, but has a significant bias along a direction (defined by 
its “azimuth” angle), or the more general case of “trended” data, which requires the “detrending” of 
data before the interpolation, after the recognition of a trending surface (linear or of higher order), 
superimposed to data. All these considerations require estimations and processing that are not easy 
to implement as an unsupervised method.

In conclusion, in our investigation we dismissed Kriging methods. The reason is the high 
degree of complexity involved in automatisation, required for the interpolation of near real-
time data.

5. Comparison

The evaluation of interpolation techniques and their comparison may rely on different 
aspects. Foster and Evans (2008) conveniently divide quantitative evaluation methodologies 
into two main classes: those which require a full and correct output to be known a priori, 
and those for which the correct outputs are unknown. They define them as simulation-
validation and cross-validation. Using an a priori approach, or simulation-validation, and 
testing interpolations of functions f(x) (ℝ2→ ℝ), there are possibly infinite test functions to 
choose, with very different characteristics. The test function f(x) is one possible realisation of 
the random variable Z(x) for the considered stochastic process. We are not including time-
dependency, for sake of simplicity.

For instance, the distribution of air temperature, air humidity or PM10 all have unique traits, 
depending on the physical quantity we are measuring, on the dynamic evolution and many other 
boundary conditions like geographical features, water bodies or anthropic structures. We may 
assume some level of differentiability, but some statistical properties like spatial stationarity 
cannot be assured. As an example, air pressure is strictly related to altitude, and pollution 
to urban areas; this implies that bivariate covariance may vary significantly from one area to 
another. We based the comparisons on two different test data sets. The first one is an analytical 
function (Franke’s test function), the second one is a “real world” data set, a DTM surface.

A similar approach to comparison among interpolation techniques can be found in Bater and 
Coops (2009), who instead take into account high resolution LiDAR data.

5.1. Franke’s test function

In his work, Franke (1979) was concerned with methods for solving the scattered data 
interpolation problem. He made a comparison of 29 methods for a solution of this problem. 
Several of these methods were variations of IDW interpolation. NNI was not included, since it 
would be defined many years later. In order to test the spatial interpolation techniques, he 
proposed some test functions f(x), non-polynomial and with different characteristics. The principal 
and subsequently most cited one is Franke’s function:

(16)
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Franke (1979) describes it as a surface consisting of two Gaussian peaks and a sharper 
Gaussian dip superimposed on a surface sloping towards the first quadrant. It is represented in 
Fig. 11. The displayed surface is undersampled only for visual clarity. 

   Fig. 11 - Franke’s test function.

5.2. DTM as test surface for environmental data

Considering the lowest atmosphere layer (altitude = 0÷11 km) the barometric formula is:

(17)

with:
Pb	 =	 static pressure: 1013.25 hPa;
Tb 	=	 standard temperature: 298.15 K = 25 °C;
Lb 	=	 standard temperature lapse rate: -6.49 K/km;
h 	 =	 height above sea level [m];
R*	=	 universal gas constant: 8.3144598 J/(mol∙K);
g0	 =	 gravitational acceleration: 9.80665 m/s2;
M 	=	 molar mass of Earth’s air: 0.0289644 kg/mol.

The formula is charted in Fig. 12. Considering a first-order approximation from h = 0 (blue 
dashed line), we may appreciate that the formula is almost linear for altitude lower than 1000 
m. The pressure drops approximately by 11.3 Pa/m.
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  Fig. 12 - Barometric formula.

Atmospheric pressure is one of the physical quantities we are considering (measuring and 
processing). Assuming that pressure is in linear relationship with altitude, we may infer that DTM 
(digital terrain model) is a valid and significant test set for the considered interpolation methods, since 
the geostatistical properties of (smoothed) altitude are coherent with the properties of pressure.

The Carta Tecnica Regionale (“Regional Topographic Map” published by the Autonomous Region 
Friuli Venezia Giulia in Italy) offers DTM with a resolution of 10 m. A “low resolution” DTM was 
used for its availability but also because environmental parameters normally have quite smooth 
variations; for this reason a very detailed surface (e.g. a 0.5 m terrain model) should not bring an 
improvement within this specific context. We used a rectangular slice relative to an area within the 
Trieste municipality (Fig. 13).

Fig. 13 - Original DTM data.
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6. Boundary and buffering

The simplest method for a geospatial interpolation is to extend the computation to 
a rectangular bounding box. This approach can be partially misleading when the shape of 
the point cloud is not well fitting in a rectangle. We may have points external to the cloud 
and too far from it to provide meaningful results. To solve this issue and to better represent 
the interpolation on a map, a basic approach is to use the convex hull of the point cloud. 
The convex hull of a point set is the smallest convex polygon containing the whole set. If we 
imagine the point cloud nails planted on a wooden table, the convex hull would be a rubber 
band surrounding all the nails.

The area of the convex hull can be furtherly extended outwards within a limited distance. 
This operation is generally denominated “buffering” and provides some additional area of 
extrapolation, surrounding the convex hull at fixed distance d, in first approximation. Distance 
d may be defined as a fraction of maximum distance between the points. The basic concept 
of convex hull to help assess the potential reliability of prediction in unsampled areas may be 
further analysed and extended to a generalised independent variable hull (gIVH), as reported by 
Conn et al. (2015).

The implemented algorithm moves through the ordered points Pi of the convex hull and for 
every point:

●	 find the segment PiAi of length d, rotated of π/2 clockwise in respect to Pi-1Pi ;
●	 find the segment PiBi of length d, rotated of π/2 counterclockwise in respect to PiPi+1;
●	 fInd the segment PiCi of length d, bisecting the angle 2α (defined by points AiPiBi).

The new buffered perimeter is .... Ai-1 Ci-1 Bi-1 Ai Ci Bi Ai+1 Ci+1 Bi+1.... as in Fig. 14.

  Fig. 14 - Recursive method for convex hull buffering.
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The polygonal Ai Ci Bi is an approximation of the circular arc at constant distance, but the 
method can be improved recursively by finding the bisectors of angles α, then the bisectors of 
the bisectors, ad libitum (see Fig. 15).

Fig. 15 - Example of convex hull buffering.

Eventually, two Python libraries were implemented, in order to provide all necessary tools. 
They rely only on NumPy and SciPy.

7. Results

Two different test data sets were taken into account: the FF (Franke’s function) and the DTM 
at 10 m.

The FF was evaluated on 100×100 points with x and y between 0.0 and 1.0. A random subset 
of 100 points (1%) was interpolated by using IDW3 (IDW with exponent p = 3.0), IDW4 (exponent 
p = 4.0), and NNI.

The DTM was evaluated on 383×386 points, which correspond to a rectangular area. The 
original data in latitude and longitude WGS84 (EPSG:4326) were converted to WGS84 Pseudo-
Mercator projection (EPSG:3857, in metres). A random subset of 1000 points (0.67%) was 
interpolated, by using IDW3, IDW4, and NNI. For each test set we compared all the interpolated 
values (ui) with the original ones (vi), evaluating errors and bivariate statistics between original 
and interpolated values. The analysis yielded histogram plot, mean, variance, RMSE (root mean 
square error) and skewness coefficient of the errors, quartiles Q1, Q2 (median), Q3, Q3-Q1 
interquartile distance, minimum and maximum of the absolute errors, scatter plot, Pearson’s 
correlation coefficient, moment of inertia and linear regression (slope and offset) for the pairs 
(vi, ui) (e.g. Isaaks and Srivastava, 1989). Tables 1 and 2 show the numerical results. Figs. 16 and 
17 show histograms and the scatterplots with superimposed lines of linear regression.
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Table 1 - Results with Franke’s test function.

	 IDW exp=3	 IDW exp=4	 NNI
errors	 		
mean	 0.004977	 0.003617	 -3.326e-05
variance	 0.001914	 0.001762	 0.0006603
RMSE	 0.04404	 0.04213	 0.0257
skewness coefficient	   2268	   9682	 1.724e+04

absolute errors	 		
quartile Q1	 0.006653	 0.006837	 0.002672
median Q2	 0.01912	 0.01859	 0.008087
quartile Q3	 0.04611	 0.04069	 0.02203
Q3 - Q1	 0.03945	 0.03385	 0.01935
min	 0	 0	 0
max	 0.1826	 0.2209	 0.1226

bivariate statistics	  	  	  
Pearson’s correlation coefficient	 0.9886	 0.9893	 0.9963
moment of inertia	 0.09696	 0.08873	 0.03301
linear regression offset	 0.024	 0.01071	 0.01359
linear regression slope	 0.9531	 0.9825	 0.9664

Table 2 - Results with DTM test.

	 IDW exp=3	 IDW exp=4	 NNI
errors [m]	 		
mean	 0.9094	 0.4536	 0.2558
variance	 167.3	 109	   48.91
RMSE	 12.97	 10.45	 6.998
skewness coefficient	 -0.000111	   9.325e-05	 0.0004675

absolute errors [m]	 		
quartile Q1	 1.89	 1.641	 0.832
median Q2	 5.335	 4.463	 2.446
quartile Q3	 12.1	 10.05	 6.0550
Q3 - Q1	 10.21	 8.408	 5.223
min	 0	 0	 0
max	 71.69	 55.48	   44.72

bivariate statistics	  	  	  
Pearson’s correlation coefficient	 0.9956	 0.9969	 0.9986
moment of inertia	   3.245e+04	 2.107e+04	 9451
linear regression offset	 9.287	 3.557	 2.558
linear regression slope	 0.9606	 0.9854	 0.9892
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Fig. 16 - Error histograms and scatterplots of Franke’s function test.

Fig. 17 - Error histograms and scatterplots of DTM test.

Bull. Geoph. Ocean., 62, 427-454Improved automated methods for near real-time mapping



448

The interpolated surfaces are displayed in Fig. 18 (IDW) and Fig. 19 (NNI), after colouring and 
contouring.

Fig. 18 - Contour plots of Franke’s function test.

Fig. 19 - Contour plots of DTM test.
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A hillshade plot for the DTM test is represented in Fig. 20. IDW interpolations present some 
recognisable graphic artifacts, the circular patterns around the samples, well known in literature 
as “bull’s eye effect”, due to the radial characteristic of IDW equation. The phenomenon is well 
illustrated in Fig. 21, presenting a zoomed detail.

Fig. 20 - Hillshade plot of DTM test.

Fig. 21 - Hillshade detail of DTM test (IDW3).

We also evaluated a specific computational aspect of the interpolation algorithms. We tested 
the IDW algorithm, the NNI (using SciPy for the incremental Voronoi decomposition) and the 
optimised version of NNI algorithm, in order to assess their speed, assumed the algorithms 
operate in the same conditions (same hardware, same software environment, same programming 
language, and same data sets).
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Fig. 22 shows the results for 
a comparison test between IDW 
algorithm (with exponent = 3), 
basic NNI, and optimised NNI 
(implemented with our algorithm, 
previously described). 

The number of considered data 
samples was always 120. The tests 
were executed on a MacBook Air 
(1.6 GHz i5, 8GB RAM and SSD).

8. Implementation

The last testbed is the practical implementation of a near real-time system collecting environ-
mental data, processing and mapping them on maps through an intuitive web interface.

The web interface in Fig. 23 displays the aggregated data after a selection query. Datacubes 
are relative to an interval of one hour and PM10 measures; in each datacube the median of the 
samples and other statistical information are calculated. The cells are coloured according to a 
configuration file, as also reported in the map legend. The reference grid layer is shown as an 
example. The map is interactive, allowing the user to click and explore every single cell. All data 
are updated in near real-time, every 10 minutes.

Fig. 23 - Web presentation of PM10 averaged values.

Fig. 22 - Speed comparisons.
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The result of interpolation over the same data set is shown in Fig. 24. IDW was chosen as 
an interpolation method, because NNI was too slow for our specific software and hardware 
environment.

PNG transparent files generated by the Python scripts, along with a small TXT file, which 
contains all georeferencing information, previously stored on the server, are requested through 
HTTPS. The web interface displays the image as an additional layer, showing interpolation and 
contour. The image is clipped with a transparency mask along the computed boundary (the 
buffering). The parameters for linear colour maps are defined in a configuration file, for every 
represented physical quantity. The colour maps are used to define cell colours (discrete view) 
and interpolated maps (continuous view).

Fig. 24 - Web presentation of interpolated PM10 values.

9. Discussion

The numerical results of Tables 1 and 2 highlight better performance for NNI method in 
comparison to IDW method and a slight improvement for IDW method with a higher exponent 
(4 compared to 3). Only the analysis with linear regression in the case of Franke’s test function 
exhibits some better results of IDW in respect to NNI (slope is closer to 1.0 and offset to 0.0).

In addition, the IDW method tends to produce some artifacts, like bull’s eye effect. Anyway, the 
IDW method is still a valid choice, especially if we need a very fast algorithm. Speed comparisons 
display a significant improvement of speed, of one order of magnitude, of IDW compared to NNI, 
which is a relevant asset in a near real-time environment. IDW can potentially be improved by 
more advanced techniques, like search neighbourhood criteria. Both interpolation methods being 
deterministic, do not need any human intervention or sophisticated auto-adaptive algorithms, 
which is a desirable aspect for a fully automated system. The choice of the interpolation method 
eventually depends on the computational resources, which are available. If the processing speed 
is sufficient in order to ensure a near real-time response (or even better, if parallelisation is 
available, e.g. by means of GPU), the NNI method would be a better choice.
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Schneider (2017) is a valid example of further improvement by means of data assimilation 
methods or, more specifically, data fusion methods. A modelled distribution can be used to adjust 
the observed distribution (in this case, concentration of NO2). Data assimilation is one of the major 
fields of interest for a future enhancement of our research.

For a better definition of a boundary where the interpolated values are most significant and 
accurate or for a proxy of uncertainty, further improvements can be made by considering the 
prediction variance and similar geostatistical parameters.

10. Conclusions

We considered the differences between several approaches to the interpolation of 
bidimensional data in order to implement an automatic method based only on an overall 
assumption of data weighting upon distance that aims at removing researchers’ bias and 
arbitrariness from the process.

We analysed the issue of data gridding and a first approximation approach to the problem 
of boundary, by presenting a simple method to define the “buffering” of the convex hull of 
measured data.

Subsequently, we chose two deterministic interpolation methods, IDW and NNI, excluding the 
Kriging method for its implementation complexity. The former is totally parameter-free, whereas 
the latter requires at least the choice of an exponent. We presented a comparison between the 
methods, based on the use of an analytical test function (the Franke’s function) and the use 
of DTM data. After considering the linear dependence of atmospheric pressure on altitude, at 
least close to the sea level, we noticed the strong relation between the digital terrain model and 
some environmental measures. Thus a test with DTM possibly offers better adherence to a “real 
world” scenario than an abstract mathematical model.

The errors were evaluated through Pearson’s correlation index, RMSE and error distribution 
around zero. The results highlighted a moderate improvement for NNI, which has a better error 
assessment.

Nonetheless, speed tests on point sets of increasing size showed that NNI is roughly one 
hundred times slower than simpler IDW. Then, we presented an implementation of NNI 
algorithm, which offers adequate speed, ten times faster than implementing NNI with “as-is” 
SciPy Python libraries. Our implementation is optimised for the recalculation of the Voronoi area 
relative to every point of interpolation.

We may infer that IDW (as first approximation) or NNI (an optimal solution, which is however 
demanding more computational power and speed, approximately one order of magnitude) allow 
us to implement near real-time interpolation of spatial environmental data in a deterministic 
way, without needing of parameter selection by skilled users or AI algorithms.

We may infer that IDW is a valuable simple alternative to more complex methods like 
NNI, in case of near real-time computing. The high speed (10 times faster than NNI in our 
implementation), the ease of coding and the more than discrete results in terms of relative 
errors provide a favourable assessment for this algorithm.

Both IDW and NNI algorithms, like most interpolation methods, have a useful property: the 
computations in different points are totally independent. This implies the opportunity of a trivial 
parallelism, which can be easily implemented using multiprocessing or a GPU environment like 
CUDA/NVIDIA.

Finally, we showed a successful example of near real-time interpolation of environmental data, 
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based on all the aforementioned considerations. Both gridded data (with rectangular cells) and 
IDW interpolated data (with contour lines, labelling, proper colour maps and boundary defined 
by a buffered convex hull) were generated on-the-fly on a server. The results were displayed in a 
web page, dynamically interacting with the user.

The method we developed proves to be effective and prevents further introductions of bias 
in the data. However, its products cannot be considered totally bias-free, given the deterministic 
weighting scheme of NNI and the possible presence of biases introduced in the preceding phases, 
potentially stacked ever since the very first phase of the experimental design.
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