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ABSTRACT We infer the P-wave velocity, S-wave velocity, density, and the litho-fluid classes 
through a two cascade estimation steps. First, we analytically invert each seismic 
gather independently using a linear 1D convolutional forward operator and assuming 
a Gaussian-mixture prior. This step is computationally fast because no hard or lateral 
constraints are imposed to the recovered solution. The outcomes provided by the 
analytical inversion are used as auxiliary variables for a geostatistical simulation that 
generates the initial ensemble of models for the subsequent stage of geostatistical 
inversion in which the estimated models are generated and iteratively updated 
according to a more realistic non-parametric prior, while spatial and hard constraints 
are now imposed to the solution. This second step determines the model update 
from the match between observed and predicted seismic gathers that are computed 
through a 1D convolutional operator based on the full Zoeppritz equations. Synthetic 
inversions are used to validate the method and demonstrate that starting the second 
inversion step from an ensemble of models that already quite accurately reproduce the 
observed data allows for a fast retrieval of a subsurface model that honours the non-
parametric prior, the hard constraints, and the spatial continuity patterns as coded by 
the variogram model.

Key words: reflection seismic, inversion, amplitude versus angle.

1. Introduction

Seismic inversion aims to describe the spatial variability of elastic properties and litho-
fluid facies around the study area. The inversion process simultaneously estimates discrete 
(i.e. litho-fluid facies) and continuous (e.g. elastic properties) model parameters from 
the observed pre-stack seismic data [partially stacked data at different incidence angles: 
Gunning and Sams (2018)]. To limit the computational cost of the inversion procedure 
linearisations of the exact Zoeppritz equations are often employed as the seismic forward 
modelling, although it is known that these linearisations are not capable of predicting the 
reflected amplitudes at far source-receiver offsets and when significant elastic contrasts at 
the reflecting interfaces occur. One of the most popular linear inversion approach is that 
proposed by Buland and Omre (2003) that infers the elastic property of P-wave velocity (Vp), 
S-wave velocity (Vs), and density (ρ) and the associated uncertainties under the assumptions 
of Gaussian distributed noise and log-Gaussian distributed elastic parameters. The Gaussian 
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assumption is often employed because it allows for an analytical and computationally fast 
derivation of the predicted model and associated uncertainties (Tarantola, 2005). However, 
it is known that the Gaussian model usually oversimplifies the actual distribution of the 
reservoir parameters in the subsurface because it neglects the influence exerted by the 
litho-fluid facies. From a mathematical point of view, this means that a Gaussian model 
does not capture the multimodality of the actual distribution of elastic parameters and that 
more complex distributions are needed such as Gaussian mixture or even non-parametric 
distributions (Aleardi et al., 2018).

Seismic reservoir characterisation is an ill-posed problem and for this reason, regularisation 
strategies are usually introduced into the inversion framework (Aleardi, 2015; Aster et al., 
2018; Menke, 2018). The regularisation terms force the final prediction to honour some 
desired statistical or structural characteristics, thus limiting the number of subsurface models 
that equally fit the observed data. In practice, soft and hard model constraints exist. Hard 
constraints are required to be satisfied by the predicted model and are usually defined by well 
log data recorded in the investigated area. Soft constraints are introduced as additional terms 
in the misfit function and penalise models that although producing good data predictions, 
do not honour the desired characteristics of the solution. Both types of constraints are often 
infused into pre-stack seismic inversion and some examples can be found in Tetyukhina et al.
(2010), Theune et al. (2010), Ulvmoen et al. (2010), Alemie and Sacchi (2011), Bongajum et 
al. (2013), Aleardi et al. (2015, 2019), Zunino et al. (2015), Wang and Wang (2016), She et al.
(2018), Aleardi and Salusti (2019).  Geostatistical inversion is a popular approach to include 
spatial constraints into the estimation process, in which geostatistical techniques generate 
subsurface models that satisfy the imposed constraints. Then, these models are updated 
according to their match with the observed seismic response and this process is iterated until a 
certain condition (i.e. a previously selected data misfit value) is satisfied. The first applications 
of this approach to seismic inversion can be found in Bortoli et al. (1993) and Hass and Dubrule 
(1994), while more recent developments are described by Doyen (2007), Bosch et al. (2009), 
Azevedo and Soares (2017), and Laloy et al. (2018). One outstanding benefit of the geostatistical 
approach is that it does not need an analytical forward operator or Gaussian or multi-Gaussian 
assumptions about noise and model parameter distributions (Bosch et al., 2010). However, 
due to the size of seismic data and the large number of subsurface realisations needed to 
reach convergence, this method can become computationally prohibitive, although the recent 
advent of high-speed multi-core CPUs and GPUs have significantly promoted its application to 
reservoir characterisation studies.

In this paper, we present an inversion strategy that combines a first step of analytical 
inversion with a subsequent geostatistical inversion. The first stage makes use of the Bayes’ 
formalism and a linear approximation of the nonlinear Zoeppritz equations to infer litho-
fluid facies and elastic properties together with the associated uncertainties from partially 
stacked seismic data. In this case, we assume Gaussian distributed noise in the data, and a 
Gaussian-mixture distribution for the model properties, so that the posterior uncertainties 
can be expressed in a closed-form. For computationally feasibility reasons, this step 
inverts each seismic gather independently, thus overlooking hard and lateral constraints, 
and only imposes a vertical correlation model to preserve the temporal continuity of the 
solution. These characteristics, together with the analytical prior model and the linear 
forward operator, make this first inversion step extremely fast. The second inversion stage 
is aimed at imposing hard and spatial constraints and at refining the outcomes of the first 
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step according to a more realistic non-parametric prior model. More in detail, the models 
generated according to the posterior distribution estimated in the first step are used as 
auxiliary variables in a geostatistical simulation process that generates the initial ensemble 
of candidate solutions. This initial population is refined during the iterative second step 
of geostatistical inversion to properly reproduce the observed data. Differently from the 
analytical inversion, now we employ the exact non-linear Zoeppritz equations as the 
forward modelling and we assume a non-parametric prior for the continuous property, 
thus relaxing the assumption of an analytical a-priori model. Note that in the first inversion 
step the posterior facies model can be analytically computed, while a numerical method is 
used for the facies classification in the geostatistical inversion. Here we employ the Bayes 
classification method but if needed more sophisticated machine learning algorithms can 
be employed (e.g. random forest, support vector classifiers, neural networks). For the lack 
of available field data, we validate the implemented approach on synthetic seismic gathers 
generated from a realistic subsurface model and assuming different signal-to-noise ratios.

2. Methods

2.1. First step: linear inversion

In the first inversion step the relation between the model parameters and the data is expressed by 
a linear approximation of the full Zoeppritz equations (Aki and Richards, 1980):

(1)

where Rpp is the P-wave reflection coefficient, t is the time, θ is the incidence angle, whereas

  indicates the average Vs/Vp ratio at the reflecting interfaces that can be derived, for

example, from the so-called low-frequency elastic back-ground model usually estimated from 
well log data interpolation. In matrix notation and adopting a convolutional forward modelling, 
the seismic gather d can be computed as follows:

  (2)

where S is the wavelet matrix, A contains the numerical coefficients ,  and  of 
Eq. 1, D expresses the first-order numerical derivative operator and  contains discrete time samples 
of the natural logarithm of Vp, Vs, and ρ, whereas the G matrix constitutes the linear forward 
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operator. We assume a Gaussian-mixture prior for , that is we assume the natural logarithm of 
elastic parameters to be Gaussian-distributed within each litho-fluid facies. This prior model can 
be written as follows: 

where K is the total number of components of the Gaussian-mixture distribution (i.e. the 
number of facies considered), ω i  is the prior weight of the i-th component,  indicates the 
Gaussian distribution with mean vector  and covariance matrix , whereas the superscript 
k indicates that such mean and the covariance are facies dependent. The number of facies and 
the statistical properties of each Gaussian component can be determined from available well 
log data investigating the study area. Note that the coefficients ω i define the a-priori probability 
of occurrence of the i-th facies. Given a linear forward operator, the posterior model is again a 
Gaussian mixture and is expressed by:

(4)

where f is the vector describing the low-frequency elastic back-ground model, whereas the 
posterior weights λi, and the a-posteriori mean vector and covariances matrix (  and ,
respectively) can be computed as follows (de Figueredo et al., 2018):

  

(5)

(6)

(7)

The symbol represents the facies class, the matrix  represents the uncertainties in 
the assumed low-frequency model, and the coefficients λπ are the point-wise posterior 
probability of facies, where point-wise means that the coefficients λπ at each spatial 
position are independent from those estimated at the neighbouring positions. Finally, the 
a-posteriori mean elastic model can be derived as a weighted summation over the posterior 
Gaussian components:
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(8)

Note that the prior model covariance matrix  expresses both the mutual correlation of 
elastic properties and their vertical variability. The correlation is given by a stationary covariance 
matrix, while the vertical correlation is obtained by multiplying (Kronecker product) the stationary 
covariance matrix with a first-order exponential function expressing the vertical correlation 
model (Buland and Omre, 2003):

(9)

where h is the temporal axis of the autocorrelation function, and α is the parameter that defines 
the temporal dependency. As previously mentioned each seismic gather is inverted separately 
so that the posterior model  over the entire investigated area is only constrained by the 
a-priori information and by the vertical correlation model, but it does not honour any hard (e.g. 
well log) or lateral constraints.

2.2. Second step: geostatistical inversion

In this second step, we relax the assumption of a Gaussian mixture a-priori model and 
we more realistically assume a facies-dependent non-parametric distribution for the elastic 
properties. This non-parametric model can be derived by applying the kernel density 
estimation algorithm to the ensemble of available well log data. In this context, the first step 
of linear inversion aims to provide an initial, preliminary, solution under the assumption 
of a Gaussian-mixture prior. The second step of geostatistical inversion not only includes 
hard and the lateral constraints, but also refines the linear solution according to a more 
realistic distribution for the unknown parameters. The vector  and covariance matrix 

 estimated in the first inversion stage are, then, used to generate an ensemble of 
models from the posterior distribution that serve as auxiliary variables in the geostatistical 
simulation process that generates the ensemble of starting models for the subsequent 
inversion step. The aim is to generate starting models that are in accordance to the desired 
spatial correlation model, that honour both the a-posteriori model provided by the linear 
inversion and the available hard constraints, and that also preserve the desired mutual 
correlation between the simulated properties (correlation between Vp, Vs, and ρ in this 
case). However, this initial ensemble of models is not constrained by the seismic data, and 
for this reason, they are updated during the following geostatistical inversion to match the 
observed seismic gathers while still preserving all the desired soft and hard constraints as 
well as the mutual correlation between the model parameters. The outcomes of the second 
inversion step are predicted Vp, Vs, ρ, and facies models, together with an approximated 
quantification of the associated uncertainties.

Before running the geostatistical inversion, some preliminary steps are needed:
1a) exploit the available well log data [e.g. the data previously used to compute the 



6

Bull. Geoph. Ocean., XX, XX-XX Aleardi

p(e)distribution], to numerically compute the joint distribution between Vs and Vp
p(Vs, Vp) and between ρ, Vp, and Vs p(ρ, Vp, Vs). The kernel density estimation 
algorithm can be used. Such joint distributions are used in the geostatistical 
simulation process to preserve plausible correlations between the elastic parameters 
in all the simulated models. Note that the use of numerical distributions, instead 
of the linear correlation coefficients, guarantees the preservation of non-linear or 
heteroscedastic characteristics of the experimental joint distribution as estimated 
from well log data;

2a) define the variogram model expressing the assumed lateral variability of the elastic 
parameters to be included into the geostatistical simulation process (e.g. by the analysis 
of the lateral variability of the available seismic data);

3a) use the ensemble of available well log data to train the facies classification method 
employed in the geostatistical inversion. Here we use the well-known Bayes classification, 
but other more sophisticated approaches could be used as well;

4a) use the outcomes of the first step of linear inversion to generate an ensemble of Q facies, 
Vp, Vs, and ρ models 
according to the statistical properties of the posterior models , and . 
In correspondence of the available well log data locations and for all the Q models, 
compute the correlation coefficients γ between the simulated properties and 
the borehole data, thus deriving ( ), with i = 1, 2, …, Q. These correlation 
coefficients are used in the following co-simulation process to generate the ensemble 
of starting models for the geostatistical inversion. Note that a high  value indicates 
that the i-th simulated property is in good agreement with the borehole information 
and assuming that the quality of this prediction is high even for the spatial locations 
away from well control, it is desirable that the i-th starting model to be generated 
is highly correlated with the considered posterior realisation. In the extreme case 
of a correlation coefficient equal to zero, the corresponding simulated model in the 
following co-simulation process will be only influenced by the a-priori information p(e) 
and the hard constraints;

5a) include into the Q Vp, Vs, ρ and facies models generated in the previous step all 
the available hard data constraints (i.e. well log information). The so updated 
ensemble of models M=

that merges the posterior realisation and the hard 
data constraints, represents the auxiliary variables for the following simulation 
process.

After these preliminary operations, the initial ensemble of elastic models for the 
geostatistical inversion can be generated. The goal is to update the previously generated M
elastic models according to the desired spatial continuity pattern. The steps advocated to this 
task are the following:

1b) generate the initial ensemble of Q Vp models with the Direct Sequential Co-
Simulation (co-DSS) algorithm that reproduces both the global histogram and 
the variogram of a variable to be simulated by combining the collocated simple 
cokriging method with the normal score transformation (Soares, 2001). In our 
implementation the i-th  model is used as an auxiliary variable while the 
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associated correlation coefficient  is used, under the Markov-type assumption 
(Xu et al., 1992), to compute the cross-covariance of the variable to be simulated 
given the previously determined auto-covariance of the auxiliary variable (Sarma, 
2010). We start from the Vp because it is the best resolved parameter in a pre-stack 
seismic inversion. Let Vp* be the variable to be simulated over a 3-D grid  = (x, y, z) 
with spatial coordinates expressed by the vectors x, y, and z, whereas  indicates 
the considered spatial location where the property must be simulated ( ). 
The entire simulation is an iterative process that visits all the spatial locations 
defined by . In each iteration, the simulated value is conditioned on the hard 
constraints and on the previously simulated values falling within a neighbourhood 
ensemble  defined around . The co-simulation process is performed as usual. 
In particular, the autocovariance of the variable to be simulated is computed as:

  
(10)

where the symbol σ represents the standard deviation, the vector h represents the 
spatial Euclidean distance,  indicates the spatial covariance,  is the assumed 
covariance model for Vp, whereas the subscript π indicates that the covariance model 
is facies dependent. Note that  because the assumed standard deviation of 
the auxiliary variable and of the variable to be simulated are equal (i.e. they both 
represent the Vp parameter). For notational convenience, in Eq. 10 we drop the 
model index i = 1,  2, …, Q;

 2b) generate the initial ensemble of Vs* models using the associated  models 
as auxiliary variable and conditioning the simulation to the previously generated 
Vp models, so to honour the estimated p(Vp, Vs) distribution. In this case, the 
Direct Sequential co-simulation algorithm with joint probability distributions [co-
DSSj; see Horta and Soares (2010)] and the Bayesian updating strategy (Doyen, 
2007) are employed. Note that in this step the  values are used to compute the 
autocovariance of the variable to be simulated:

(11)

3b) generate the initial ensemble of р* models with the same strategy previously described 
in step 2b. The only difference is that, in this simulation, the  models constitute 
the auxiliary variable, while the generated density models are conditioned to the 
previously generated Vs models and honour the p(Vs,  ρ) distribution;

4b) perform a facies classification based on the previously generated Vp* and Vs* and 
models and derive the associated Q facies models .

The steps 1b, 2b, 3b, and 4b generate the ensemble of elastic and facies models that 
constitute the starting points for the geostatistical inversion. However, it is not guaranteed that 
these models honour the observed seismic data. To this end, this initial population is modified 
to match the observed seismic response. This updating is performed using an iterative inversion 
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that is described in the following:
1c) use a seismic forward modelling and a previously determined source wavelet to 

predict the seismic response associated with the Q , Vp*, Vs* and  models. This 
generates the ensemble of Q predicted seismic data sets . In 
our case, we employ a convolutional forward modelling based on the full Zoeppritz 
equations;

2c) each seismic gather (partially stacked data) at each spatial position is compared against 
the co-located observed data. The comparison is not performed along the entire time 
axis but within non-overlapping time widows extended over the entire considered angle 
range. For each j-th predicted gather and for each i-th time window w we compute the 
following normalised distance:

(12)

For each i-th time window the following objective function is maximised during the 
geostatistical inversion:

(13)

where c0(x, y) indicates the zero-lag correlation coefficient between the two signals x
and y. Note that the  values lie within [0, 1]. The time length of the windows must 
be set according to the wavelength period of the source wavelet. For each time window   

we extract from the ensemble of Q models the Vp, Vs, and ρ values that generate 
the best objective function and store these values within the , 
and  cubes. Similarly, we store the best objective function value for each time window 
within the  cube. The auxiliary volumes , and  serve 
as secondary variables and local regionalised models for the generation of the new 
set of elastic models for the next iteration. This strategy is similar to that described in 
Azevedo and Soares (2017), which draw inspiration from the cross-over principle of 
genetic algorithms. Note that the best Vp, Vs, and ρ cubes, created at the end of each 
iteration, produce synthetic data with the highest objective function values within 
each window but are composed by portions of different elastic models. For this reason, 
these cubes taken together do not honour the assumed spatial correlation model;

3c) update the current Vp* models, thus deriving the Vp+ models with a strategy similar to 
that used in step 1b, but in this case the  model is the auxiliary variable, while the 
correlation coefficients   for each spatial position are taken from the cube. For 
example, the autocovariance of the variable to be simulated is computed as follows:

(14)
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4c) update the i-th Vs* model conditioned not only to the best Vs model , but also 
to the associated i-h Vp+ model previously created. This is accomplished by the same 
strategy described in step 2b. The only difference is that  and  are used as 
auxiliary variables and correlation coefficients to compute the autocovariance. This 
step provides the Vs+ models;

5c) a similar approach to that described in the previous step is used to update the Q  
models. These models are conditioned to the previously updated Vs models. This step 
provides the models;

6c) perform the facies classification on the generated ensemble of  and 
models, thus deriving Q updated facies models ;

7c) impose and ;

8c) iterate from steps 1c to 7c until a maximum number of iterations is reached or when 
a previously determined average objective function value between observed and 
predicted data is attained.

The quantification of the uncertainty in seismic inversion is often of crucial importance. For 
our approach, an exact mathematical assessment of the posterior model is not feasible since we 
are not sampling the model space according to a Markov Chain Monte Carlo method. However, 
for an approximated uncertainty quantification and visualisation of the so-called equivalence 
regions of the solution (Fernandez Martinez, 2012) we can derive the mean predicted model and 
the associated standard deviation by simply computing the mean and the standard deviation 
of the elastic , and  models generated when the objective function value begin to 
oscillate around a stable value. With a similar strategy, we can derive the maximum a-posteriori
(MAP) solution for the facies model and the probability of occurrence of each facies at each 
spatial location.

We point out that we assume stationary (spatially invariant) variogram model and 
a-priori distribution for the model parameters. More in detail, we consider a Gaussian 
variogram model along the temporal and spatial directions. However, the implemented 
approach can easily incorporate facies-dependent spatial correlation patterns and can also 
be extended to non-stationary variogram models and a-priori information. In this case, 
the entire investigated area should be divided into sub-regions in which the assumption 
of stationarity is more likely to be valid. Then, the probability distribution and the spatial 
continuity patterns must be estimated within each zone and the inversion can be run using 
local multi-distributions and local spatial continuity patterns (Nunes et al., 2017; Sabeti et 
al., 2017). In the following examples, the temporal correlation function and the a-priori
model information are calculated from some of the well log data used to generate the true 
model. Fig. 1 shows a schematic representation of the implemented inversion workflow. 
Note the different colours that highlight the input for each inversion step. Fig. 2 shows 
a more detailed representation of the geostatistical inversion procedure. We implement 
parallel Matlab codes running on a quad-core Intel i7-7700 at 2.80 GHz with 16 Gb RAM. 
Due to the limited computational resources available in the following we consider a 2D 
subsurface model, but the implemented approach is directly extendible to 3D inversions, 
provided that enough computational resources and efficient inversion codes are available.
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Fig. 1 - Schematic workflow of the implemented inversion approach.

Fig. 2 - Schematic workflow of the geostatistical inversion step.
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Fig. 3 - From left, to right we represent the true Vp, Vs, and ρ models. The dashed red line represents the assumed 
position of the well that constitutes the hard constraints, whereas the black arrows indicate the main sand body target 
of the inversion process.

3. Inversion examples

The true model we consider has been derived by integrating a geologic interpretation with 
the information provided by borehole data pertaining to five wells. This model represents an 
in-line section extracted from a quite complex geological context where a turbiditic shale-sand 
sequence hosts gas-saturated sand bodies. 132 time samples and 111 common-mid-point 
(CMP) gathers form the true model. The time sampling is equal to 0.002 s, whereas 25 m is 
the distance between each CMP. This translates into a considered time interval of 262 ms and 
a total profile length of 2750 m. As hard constraints we consider the elastic properties taken 
at the distance of 1 km. The well log data used to define the true model have also been used 
to derive the statistical characteristics of the a-priori model. In all the following examples, we 
consider spatially invariant elastic a-priori assumptions. Fig. 3 shows the elastic properties of 
the true model, together with the position of the main gas-saturated sand layer (black arrow), 
and the spatial position of the hard constraints (red line). In Fig. 3 the low Vp, Vs, and ρ values 
identify the sand bodies, while shales are characterised by higher elastic property values. 
Note, that the shale and sand formations are characterised by spatially variant orientations 
and relationships. For the inversion, we consider three facies: shale, brine sand, and gas sand.

Fig. 4 represents the joint distribution of the elastic properties projected onto the Vp-Vs and 
Vp-ρ planes. These distributions have been estimated by applying the kernel density estimation 
algorithm (with a Gaussian kernel) to the ensemble of available well log data. The distributions 
of Fig. 4 have been used in the Bayesian updating step of the co-simulation procedure. Note 
the non-linearity of the Vp-Vs and of the Vp-ρ relations indicating that, in this case, the use of 
a simple collocated cokriging approach, assuming a linear relationship between the auxiliary 
variable and the variable to be simulated, would have provided simulated properties with 
spurious mutual correlations. Instead, the use of the Bayesian updating approach with the 
joint distribution guarantees the actual distribution of the elastic properties being preserved 
during the simulation process.

Fig. 5 represents the distribution of the elastic parameters within each facies projected (for 
graphical convenience) onto the P-impedance, S-impedance (Ip-Is) plane. Again, this distribution 
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has been derived from the available well log data and has been used to derive the statistical 
properties of the facies-dependent prior model and to train the Bayes classification algorithm. 
As expected, we observe that the Ip and Is values decrease passing from shale to sand and when 
gas  replaces brine in the pore space.

Fig. 6 illustrates the 1D marginal non-parametric a-priori distributions used in the 
geostatistical inversion and derived by applying the kernel density estimation method to 
the available well log information. In each facies component, we note multimodalities and 
skewness that indicate the deviation of the actual distributions from a simple Gaussian model. 
However, in the first analytical inversion step, we neglect these deviations by simply assuming 
Gaussian-distributed elastic parameters within each facies (Fig. 6). The prior weights and the 
statistical properties of the mixture have been derived using the expectation-maximisation 
method applied to the ensemble of available well log information (Hastie et al., 2005). Note 
that the Vp, Vs, and ρ values show an overall decrease moving from shale to brine sand and 
gas sand and that shale is expected to be the most probable facies in the investigated area (i.e. 
the facies with the highest prior weights).

Fig. 4 - Joint distributions of Vp-Vs, and Vp-ρ (panels a and b, respectively). The black circles represent the well log data 
input to the kernel density estimation, whereas the colour maps code the probability values.

Fig. 5 - Distribution of the elastic properties of Ip and Is within each facies derived from the available well log data. 
Blue, yellow, and red represent shale, brine sand, and gas sand, respectively.
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Fig. 6 - Gaussian-mixture marginal priors employed in the first analytical inversion step (a) and the 1D marginal prior 
distributions showing the three components of the non-parametric distributions derived from the available well log 
data and employed in the geostatistical inversion step (b).

Fig. 7 shows the experimental and modelled temporal and spatial correlation functions. The 
experimental temporal correlation function has been derived from the available well log data, whereas 
the lateral variability of the observed seismic data has been used to calibrate the spatial correlation 
pattern. For simplicity, we consider a stationary correlation function equal for all the considered litho-
fluid classes. However, if needed a facies-dependent correlation can be used to properly model the 
different lateral and vertical variability of the elastic properties within each facies.

Fig. 7 - Experimental (blue circles) and modelled (red curve) temporal correlation functions (a). The blue circles rep-
resent the average temporal autocorrelation of the available well log data. The red curve represents the temporal 
constraints included in the first and second steps of the inversion procedure. The modelled correlation corresponds 
to a Gaussian variogram model with a range of 6 ms.  Experimental (blue circles) and assumed (red curve) spatial 
correlation function (b). The blue circles represent the average spatial autocorrelation of the observed seismic data. 
The red curve represents the spatial constraints included in the second step of the inversion procedure. The modelled 
correlation corresponds to a Gaussian variogram model with a range of 90 m.
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To demonstrate the applicability and the benefits of the implemented inversion approach over 
a more standard linear inversion, we perform two different inversion experiments with different 
signal-to-noise (S/N) ratios in the data. In both cases, we assume Gaussian distributed random 
noise and the observed data have been computed using a 1D convolutional forward operator 
based on the full Zoeppritz equations and for the incidence angles of 0, 15, and 30 degrees, while 
a 50-Hz zero-phase Ricker constitutes the source wavelet. In the first example, the observed data 
are characterised by a high S/N ratio equal to 25 (computed as the ratio of the summed squared 
magnitude of the noise-free data to that of the noise vector). In the second case, the S/N ratio is 
equal to 2. In both tests, we assume that the source wavelet is perfectly known, although this is 
a simplification with respect to real data applications in which the estimated wavelet is usually 
affected by errors and uncertainties.

We now describe the first test in which the observed data are characterised by high S/N ratio. 
Fig. 8a compares the true facies model and the MAP facies solution provided by the first linear 
inversion step. In this favourable scenario, the linear inversion yields satisfactory results in 
which the actual facies model is accurately predicted.  Fig. 8b shows the mean posterior elastic 
model estimated by the first step of linear inversion. Again, we observe final predictions in good 
agreement with the true properties that satisfactory preserve the actual spatial continuity of 
the elastic parameters. Fig. 9 shows direct comparisons between the elastic properties that 
constitute the assumed hard constraints and the co-located mean a-posteriori model estimated 
by the first inversion step. We obtain very high correlation coefficients between the true and 
the predicted model that, as expected, decrease from Vp (the best resolved elastic parameter) 
to Vs and ρ (the least resolvable property). These coefficients are used as correlation values in 

Fig. 8 - Inversion results after the first step for a S/N ratio equal to 25: a) comparison between the true facies models 
and the MAP facies solution; b) mean a-posteriori Vp, Vs, and p models.
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the geostatistical simulation process that generates the ensemble of starting models for the 
second inversion step. Fig. 10 illustrates 4 out of the 10 models forming the initial population 
input to the geostatistical inversion. The difference between the models represented in Fig. 8 
and those displayed in Fig. 10 is that the former are predictions of a linear inversion without 
the inclusion of hard and lateral constraints. Instead, the latter results from a geostatistical 
simulation process that imposes hard and lateral constraints to the outcomes of the linear 
inversion. However, these starting models are not directly constrained by the seismic data and 

Fig. 9 - Cross-plots between the hard constraints and the co-located mean Vp, Vs, and ρ models estimated by the first 
step of linear inversion.

Fig. 10 - From top to bottom we represent 4 out of the 10 starting models used in the geostatistical inversion.
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for this reason, they must be refined and updated during the geostatistical inversion. In all the 
following examples the second step of geostatistical inversion runs for 40 iterations and makes 
use of the exact Zoeppritz equations as the forward modelling. Note that the use of the exact 
Zoeppritz equations makes it possible to extend the incidence angle range with respect to that 
considered in the first step of linear inversion. However, for the sake of coherency, in all the 
following tests the incidence angle range is always limited to the three angle stacks of 0, 15, 
and 30 degrees.

Fig. 11 shows the evolution of the correlation coefficient between the observed data and 
the data predicted by the ensemble mean model provided by the geostatistical inversion. 
We observe that the algorithm reaches convergence just after 5 iterations after which the 
correlation value starts to oscillate around a stable value. This indicates that the convergence 
is achieved in 5 iterations, and hence all the models generated after the fifth iteration have 
been used to compute the final average Vp, Vs, and ρ sections and the associated standard 
deviation values.

Fig. 12 represents the mean Vp, Vs, and ρ models estimated at the end of the geostatistical 
inversion. The good agreement between these estimations and the true model demonstrates 

Fig. 11 - Evolution for the first 20 iterations of the correlation coefficient between the observed data and the data 
predicted on the average ensemble model estimated at each iteration.

Fig. 12 - Final mean Vp, Vs, and ρ models predicted at the end of the second step of geostatistical inversion.
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the reliability of the implemented inversion approach. Fig. 13a confirms that the litho-fluid 
classes have been correctly identified, and particularly the gas-saturated sand bodies have 
been located with very low ambiguity (Fig. 13b). To better quantify the improvement on the 
facies classification at the end of the geostatistical inversion with respect to the predictions 
of the linear inversion, we compute the so-called confusion matrices between the true 
facies model and the MAP facies solutions retrieved by the two inversion steps (Fig. 14). The 
diagonal elements of these matrices quantify the percentage of samples actually belonging to 
each facies that have been correctly classified in that facies, while the off-diagonal elements 
indicate misclassifications. After both the first and second inversion step almost the 100% of 
shales have been correctly identified, while the second step of geostatistical inversion results 

Fig. 13 - Comparison of the true facies model and the MAP facies solution retrieved by the geostatistical inversion (a) 
and probability of occurrence of each facies at each spatial location as estimated by the geostatistical inversion (b).

Fig. 14 - Confusion matrices computed by comparing the true facies model and the MAP facies solution estimated by the lin-
ear inversion (left) and the geostatistical inversion (right). Sh, Bs and Gs refer to shale, brine sand and gas sand, respectively.
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in a slight improvement of the gas sand classification. The off-diagonal values indicate that 
both inversion steps interpreted some brine sand bodies as shale, whereas some gas sands 
have been erroneously attributed to brine sands.

We now repeat the inversion for the data set with the S/N ratio equal to 2. Fig. 15a shows that 
in this case the MAP facies solution estimated by the linear inversion overpredicts the occurrence 
of brine sand, and none of the gas sands have been correctly identified. In the predicted facies 
model the main sand bodies object of this study is characterised by a poor spatial continuity, and 
this makes the mapping of the sand boundaries ambiguous. The a-posteriori mean Vp, Vs, and 
ρ  models (Fig. 15b) clearly show lateral scattering resulting from the error propagation from the 
data to the model space. In this context, the inclusion of lateral constraints is particularly useful 
to promote the spatial continuity of the predicted continuous and discrete properties. In Fig. 15b 
also note the overall underestimation of the elastic contrasts at the reflecting interfaces. Indeed, 
in this case with significant noise contamination, the data covariance matrix indicates that we 
are less confident on the observed data and for this reason the Bayesian inversion is mainly 
driven by the spatially invariant and constant a-priori elastic model.

Fig. 15 - Inversion results after the first step for a S/N ratio equal to 2: a) comparison between the true facies models 
and the MAP facies solution; b) mean a-posteriori Vp, Vs, and ρ models.

Similar to the previous test, we run the geostatistical inversion for 40 iterations using an 
initial ensemble of 10 Vp, Vs, and ρ models. In Fig. 16 we observe that the correlation value 
between observed data and the data predicted on the ensemble average stabilises after 
five iterations.  Therefore, all the elastic and facies models generated after the first five 
iterations have been used to compute the final predictions (mean elastic model and MAP 
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facies solution) and the associated uncertainties. The final mean elastic models predicted 
by the geostatistical inversion are illustrated in Fig. 17a. We note that the lateral and hard 
constraints infused into the geostatistical inversion significantly reduce the lateral scattering 
that affected the outcomes of the first inversion step. Besides, by comparing the true model 
of Fig. 3 with those shown in Figs. 15b and 17a, we can appreciate how the geostatistical 

Fig. 16 - Evolution for the first 20 iterations of the cor-
relation coefficient between the observed data and 
the data predicted on the mean ensemble model es-
timated at each iteration.

Fig. 17 - Final mean models predicted at the end of the second step of geostatistical inversion (a) and percentage 
reduction of the posterior uncertainty with respect to the a-priori uncertainty (b).
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inversion moves the Vp, Vs, and  ρ predictions very close to the true model even in this non-
favourable scenario characterised by a low S/N ratio. Fig. 17b represents the percentage 
reduction of the posterior uncertainty on the estimated elastic parameters with respect to 
the a-priori uncertainty. As expected, the uncertainty reduction is higher for Vp and lower for 
density. In Fig. 18 we observe the close match between the true facies model and the MAP 
facies solution recovered by the geostatistical inversion. The improvements in the facies 
prediction achieved by the second inversion step can be appreciated by comparing Fig. 18a 
with Fig. 15a. The increased spatial continuity of the results achieved by the geostatistical 
inversion facilitates the mapping of the sand bodies throughout the inverted section. Figs. 
19 and 20 show a comparison between the observed partial angle stacks at 0, 15 and 30 
degrees and the stacks computed on the mean models estimated after the first and second 
inversion step, respectively. In Fig. 19 we observe that the lateral scattering affecting the 
estimated elastic models generates lateral scattering also on the estimated partially stacked 
sections. This lateral scattering is efficiently attenuated by the geostatistical inversion (Fig. 
20). The underpredictions of the seismic amplitudes visible in the rightmost plots of Fig. 19 
are related to the overall underpredictions of the elastic property contrasts at the interfaces 
(Fig. 15b). A comparison of Figs. 19 and 20 also illustrates the overall decrease of the data 
misfit as we pass from the first to the second inversion step. Finally, the comparison of the 
confusion matrices computed after the first and second estimation steps (Fig. 21) highlights 
the improvements in the facies classification achieved by the geostatistical inversion. After 
the second step, 100% of the shales and more than 60% of brine and gas sands have been 
correctly identified. Differently after the linear inversion only 25% of gas sands and 0% of 
gas sands were correctly classified, while 75% of brine sands were interpreted as shales, 
92% of gas sands were erroneously classified as brine saturated, and 8% of gas sands were 
classified as shales.

Fig. 18 - Comparison of the true facies model and the MAP facies solution retrieved by the geostatistical inversion (a) 
and probability of occurrence of each facies at each spatial location as estimated by the geostatistical inversion (b).
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Fig. 19 - Comparison between the observed angle stacks (left), the predicted angle stacks computed on the mean 
a-posteriori model (centre) provided by the first inversion step, and their difference (right): a) angle stacks for an inci-
dence angle of 0°; b) angle stacks for an incidence angle of 15°; c) angle stacks for an incidence angle of 30°.

Fig. 20 - Comparison between the observed angle stacks (left), the predicted angle stacks computed on the mean 
model estimated by the second inversion step (centre), and their difference (right): a) angle stacks for an incidence 
angle of 0°; b) angle stacks for an incidence angle of 15°; c) angle stacks for an incidence angle of 30°.
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Fig. 21 - Confusion matrices computed by comparing the true facies model and the MAP facies solution retrieved by the lin-
ear inversion (left) and the geostatistical inversion (right). Sh, Bs and Gs refer to shale, brine sand and gas sand, respectively.

4. Conclusions

We described an inversion approach that infers discrete (litho-fluid classes) and continuous 
(Vp, Vs, and ρ properties from pre-stack seismic data. The implemented inversion is primarily 
devoted at attenuating the noise propagation from the data to the model space in case of low-
quality seismic gathers so to achieve more stable and spatially continuous estimations of the 
sough subsurface characteristics. The inclusions of hard and spatial constraints into the inversion 
framework usually results in a substantial increase in the computational cost of the estimation 
process. For this reason, we split the whole inversion process into two cascade steps. The first 
one is a computationally fast linear Bayesian inversion that converts the pre-stack data into 
the elastic properties. The use of a linear or linearised forward modelling operator, and the 
assumption of a Gaussian-mixture prior model allows for an analytical and exact assessment 
of the posterior uncertainty for both the discrete and the continuous property. To limit the 
computational effort, this first step separately inverts each seismic gather and only impose 
vertical constraints to the recovered solution. The second step of geostatistical inversion is aimed 
at refining the outcomes of the previous step by adding the available hard constraints, and by 
imposing a lateral continuity pattern to the recovered model. Starting the geostatistical inversion 
from an ensemble of models that already quite accurately reproduce the observed data reduces 
the computational costs of the geostatistical inversion procedure, that is a lower number of 
generated models (and forward modelling evaluations) are needed to attain convergence. 
Moreover, this second inversion step relaxes the need of a linear forward operator and the 
assumption of an analytic prior model and it can also incorporate a non-linear seismic forward 
modelling (e.g. the Zoeppritz equations). All the models generated during the second inversion 
step reproduce the available hard constraints, the prior assumptions, and the spatial variogram 
model as estimated from the available well log data. In the second step, the Bayesian approach 
has been used to perform the facies classification on each generated model, but, if needed, any 
other classification method can be incorporated into the inversion framework. The ensemble 
of models generated during the geostatistical inversion can be used to numerically compute 
an approximated uncertainty quantification. A Markov Chain Monte Carlo sampling could be 
used for an accurate uncertainty assessment, but at the expense of a substantial increase of the 
computational effort. We implement parallel Matlab inversion codes running on a notebook 



23

Bull. Geoph. Ocean., XX, XX-XXAnalytical+geostatistical pre-stack inversion

equipped with an Intel i7-7700 at 2.80 GHz with 16 Gb RAM. The parallelisation is particularly 
useful to speed up the geostatistical inversion because the generation and the update of the 
ensemble of models at each iteration can be easily distributed across different cores. All the 
described examples run in 90 minutes, approximately. For the limited computational resources 
available, we focused the attention to 2D models, but the method can be also applied to 3D 
inversions. To this end, a more efficient and scalable inversion code is needed.
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