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ABSTRACT  The main objective of this work is to propose a method based on adaptive filtering to 
reduce the random noise from post-stack seismic data. The random noise can be reduced 
from seismic data by stacking the traces in multiple coverage, filtering during processing 
or using arrays of geophones during data acquisition. Recently, several filters have been 
used in image processing to resolve or compensate the deficiencies of conventional 
filtering such as the Adaptive Median Filter and 2D Adaptive Wiener Filter. Therefore, 
Adaptive Median filtering has been applied widely in image processing as an advanced 
method compared to standard median filtering. In this study, we present a combination 
of the Adaptive Median Filter, 2D Adaptive Wiener Filter, and Adaptive Local Noise 
Reduction Filter applied to post-stacked synthetic and real seismic data. The different 
comparisons of resulting seismic sections and their power spectrum show that both the 
proposed methods of filtering improve seismic imaging of the faulted structures better 
than other used filters.
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1. Introduction

The seismic data processing sequence contains several types of filtering in order to reduce 
noise not attenuated by multiple coverage during acquisition (Telford et al., 1990; Yilmaz, 2001). 
The filtering processing is applied to seismic data to attenuate the effect of noise and preserve 
the useful signal in order to produce a clean, high-resolution final seismic image. Thus, the main 
purpose of filtering operations is to obtain an interpretable seismic image, constituting a basic 
document for drilling. The seismic image is processed using appropriate techniques of signal 
processing and converted to digital forms and, thereafter, some operations are applied in order 
to obtain an enhanced image and extract some useful information (Gonzales and Woods, 2002).

Several methods of filtering have been proposed such as F-K filtering (Stewart and Schieck, 
1993), median filtering (Bednar, 1983), Adaptive Noise Cancellation (Dragoset, 1995), F-x 
deconvolution (Canales, 1984), adaptive local thresholding by verification-based multithreshold 
probing with application to vessel detection in retinal images (Jiang  and Mojon, 2003), curvelet 
thresholding (Neelamani et al., 2008), F-x empirical-mode decomposition predictive filtering 
(Chen and Ma, 2014), adaptive nonlocal means algorithm (Shang et al., 2013), and T-x frequency 
filtering of high resolution seismic reflection data using singular spectral analysis (Rajesh et 
al., 2014). The adaptive filtering constitutes an important tool in seismic data analysis with its 
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varieties such as the Lee filtering. Lee filtering is a standard deviation based (sigma) filter that 
operates on statistics by least squares estimation calculated within individual filter windows 
(Lee, 1980). The Frost filter is a circularly symmetric filter that uses local statistics (Zhenghao 
and Ko, 1994). The Kuan filter is similar to the Lee filter but uses a different weighting functional 
tested on deep seismic reflection data (Ristau and Moon, 2001).

Advanced adaptive filtering is considered an effective method to suppress speckle noise in 2D 
digital image data; a variety of adaptive filtering algorithms have been developed and employed 
to attenuate random noise from seismic data.

An adaptive noise attenuation method developed by Cai et al. (2014) for edge and amplitudes 
preservation involves decomposing the full-band seismic signal into multiband data and, then, 
processing using nonlinear anisotropic dip-oriented edge-preserving filtering. This method, 
based on high resolution processing, provides useful information for structural interpretation, 
specially to identify faults, breaking points, and horizon tracking. In the case of random noise, 
the useful signal is predicted by the autoregressive filter and the residual signal is assumed to be 
the noise (Bekara and Baan, 2009).

Moreover, Sacchi and Naghizadeh (2009) proposed an adaptive linear prediction filtering 
algorithm implemented via filters that are estimated from the inversion of a system of equations 
in the T-x or f-x domain for removing random noise in seismic imaging. Deng et al. (2015) propose 
an adaptive version of time-frequency peak filtering to remove random noise in seismic imaging.

Various algorithms of adaptive filters such as the Adaptive Median (AM) filter and 2D 
adaptive filter were widely used to denoise seismic sections. The two adaptive filters: optimum 
2D median filter and 2D Adaptive Wiener (2DAW) filter were applied in 2D ultra-shallow seismic 
reflection and ground-penetrating radar data to suppress random noise (Jeng et al., 2009). Gan 
et al. (2016) propose a structural-oriented median filter to attenuate the blending noise along 
the structural direction of seismic profiles, to flatten the seismic record in local spatial windows 
and, then, to apply a traditional Median Filter (MF) to the third flattened dimension and the 
estimation of the local slope, calculated by first scanning the Normal Moveout (NMO) velocity.

To reduce the noise, an efficient deblending framework using median filtering without requiring 
a correct NMO algorithm has also been proposed by Bai and Wu (2017): they propose an efficient 
based modified median filtering approach that does not require a correct NMO correction. Liu et 
al. (2019) propose an optimal adaptive bi-stable array stochastic resonance based grey-scale image 
restoration enhancement method under low peak signal-to-noise ratio environments. In this method, 
the Hilbert scanning is adopted to reduce the dimension of the original grey-scale image. Results 
show that the proposed method significantly outperforms the classical image restoration methods. 
As another efficient method, Chen et al. (2020) propose a type of structure-oriented median filter that 
can effectively attenuate spike-like noise, in which a structure-oriented space-varying median filter 
can adaptively squeeze and stretch the window length of the median filter. This method is applied to 
remove the spike-like blending noise arising from the simultaneous source acquisition. More recently, 
a new approach has been proposed by Saad and Chen (2020) to attenuate random noise based on 
a Deep-Denoising Auto-Encoder (DDAE) that encodes the input seismic data to multiple levels of 
abstraction, and, then, decodes those levels to reconstruct the filtered seismic signal.

In this work, we introduce some image-based filters, namely AM filter, 2DAW filter, and 
Adaptive Local Noise Reduction (ALNR) filter, to remove random noise from seismic stacked data. 
These methods are based on the estimation of the statistical parameters of the noise and signal, 
such as the mean and variance. We begin by briefly discussing the classic adaptive filtering based 
on the least mean squares (LMS) algorithm and its limitation.
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We review the theory of some used filters, in particular the 2DAW filter, AM filter, and propose 
the new ALNR filter. Then, we apply the filter to synthetic and real stacked data to attenuate random 
noise, and compare different spectra of filtered images. As per image quality, these filters achieve a 
better result of edge preservation (reflections) and good quality for seismic imaging.

2. Review of adaptive filter based on LMS algorithm

There are two types of digital filters: fixed filter and adaptive filter. A fixed filter is useful when 
the parameters of signal and channel are known. On the other hand, adaptive filters are useful 
when the dynamics of the signal or channel is unpredictable and changes with time.

Adaptive filters are commonly used in image processing to enhance or restore data by 
removing noise without significantly blurring the structures in the image (Westin et al., 2000). 
Adaptive filters have been popular since the early 1960s after they were studied and developed 
by Widrow (1959). His development is based on the theory of Wiener filters for optimum linear 
estimation. There are also other approaches to the development of adaptive filter algorithms, 
such as Kalman filters, least squares, etc (Sayed, 2003).

LMS is the most frequently used algorithm in adaptive filtering. It is basically a gradient 
descent algorithm, which means that it adjusts the adaptive filter coefficients by modifying them 
by an amount, which is proportional to the gradient of the error surface. This filter’s algorithm is 
defined by the following system:

(1)

The LMS adaptive filter algorithms available in this system are defined as:

(2)

where n is the current time index, u(n) the vector of buffered input samples at step n,  
the complex conjugate of the vector of buffered input samples at step n, W(n) the vector of filter 
weight estimates at step n, y(n) the filtered output at step n, e(n) the estimation error at step n, 
d(n) the desired response at step n, µ the adaptation step size and α the leakage factor (0 < α ≤ 
1). Fig. 1 shows an adaptive filter structure. 

The LMS algorithm, as one of most popular adaptive algorithms for noise attenuation by 
adaptive filtering, has the advantage of easy implementation. LMS algorithms were tested in a 
MATLAB code; Fig. 2 shows the sinusoidal signal (in black) corrupted by 10% (magenta) and 50% 
(magenta) of random noise, in Figs. 2a and 2b, respectively. The results (in red) represents the 
signal filtered by an adaptive filter based on the LMS algorithm. However, the LMS algorithm has 
the disadvantage of serious signal distortion when the level of noise is high (Fig. 2b).
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Fig. 2 - Example of a filtered sinusoidal signal by adaptive LMS filter after corrupting by 10% (a) and 50% (b) of random noise.

Fig. 1 - Block diagram of an adaptive filter.
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3. Proposed filters

3.1. The AM filter

Median filtering is a nonlinear method used to remove noise from images. The AM filter 
performs spatial processing to preserve detailed and smooth noise (Rakesh, 2018). It is very 
effective at removing noise while preserving edges. It is particularly effective in removing salt 
and pepper type noise. The median filter works by moving through the image pixel by pixel, 
replacing each value with the median value of neighbouring pixels. The pattern of neighbours is 
called the ‘window’, which slides, pixel by pixel, over the entire image. The median is calculated 
by first sorting all the pixel values from the window into numerical order, and, then, replacing 
the pixel being considered with the middle (median) pixel value. The median filter with variable 
window length is an AM filter, thus it can be conveniently used in the presented processing work 
or without the need for much human input (Bai and Wu, 2017).

The centre pixel of the window is evaluated to verify whether it is an impulse or not. If it is 
an impulse, then the new value of that pixel in the filtered image will be the median value of the 
pixels in that window. If, however, the centre pixel is not an impulse, then the value of the centre 
pixel is retained in the filtered image.

AM filtering can handle the filtering operation of an image corrupted with impulse noise of 
probability greater than 0.2. This filter also smoothens out other types of noise, thus, giving a 
much better output image than the standard median filter.

3.2. Implementation of algorithm

The AM filter works on a rectangular region Sxy. The AM filter changes the size of Sxy during the 
filtering operation depending on certain criteria as described below. The output of the filter is a 
single value which replaces the current pixel value at (x, y), the point on which Sxy is centred at 
the time. The following notation is reintroduced here:

Zmin = minimum grey level value in Sxy,
Zmax  = maximum grey level value in Sxy,
Zmed  = median of grey levels in Sxy,
Zxy = gray level at coordinates Sxy,
Smax = maximum allowed size of Sxy.
The AM filter works in two levels, denoted Level A and Level B, as follows:
Level A: A1 = Zmed  - Zmin,  A2 = Zmed  - Zmax.
If A1 > 0; and A2 < 0, go to level B, else increase the window size.
If window size ≤ Smax repeat level A,
else output Zxy.
Level B: B1 = Zxy  - Zmin,  B2 = Zxy -  Zmax,
if B1 > 0, and B2 < 0 output Zxy, else output Zmed.

3.3. The 2ADAW filter

The 2DAW filter is a real time optimal filter updated from the Wiener filter technology, 
which became available in 1940. A central problem in the application of random fields is the 
estimation of various statistical parameters from real data. The Wiener filter minimises the 
least squares error between the desired and actual outputs. The desired filter coefficients are 
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consequently obtained by solving a normal equation in matrix form, which is derived by a least 
squares error method. Subsequently, improved versions of the Wiener filter were introduced 
for image processing, for example a collaborative Adaptive Wiener Filter employs a finite size 
moving window for image restoration using a spatial-domain multi-patch correlation model 
(Mohamed and Hardie, 2015).

The classic Wiener filter can process a signal according to the variance within the entire time 
range but the shortfall is that it neglects the local characteristics of the signal. The Adaptive 
Wiener Filter can adjust the filtering output according to the local variance of the signal. When 
the local variance is large, the smoothing effect becomes strong. The result of the adaptive filter 
is better than that of a linear filter because it can protect edge and high frequency information 
of the signal (Liu et al., 2006). Frequently the signals are corrupted by additive noise, so the 
measurement obtained, y(n), is related to the original signal, x(n), as follows:

        (3)

The Wiener filter is an optimal filter derived with respect to a certain objective criterion. 
Westin et al. (2000) describe how the Wiener filter may be designed to adapt to local and 
spatially variable details in images. The filter is cast as a combination of low-pass and high-pass 
filters, with factors that control their relative weights.

In the case of linear stationary estimation, we wish to estimate the process f with a linear 
combination of values of the data g. This can be expressed by a convolution operation: f = h * 
g, where h is a linear filter. A very general statement of the estimation problem is: given a set 
of data g, find the estimate  of an image f that minimises some distance: ||f - || by local linear 
minimum mean squared error, also known as the Adaptive Wiener Filter; we can minimise the 
aforementioned distance under the following conditions.

Assume that the image is corrupted by additive noise. Minimise the local mean squared 
error by applying a linear operator to each pixel in the image. The local mean and variance 
are estimated from a rectangular window around the pixel. Lee (1980) derived an efficient 
implementation of a noise-adaptive Wiener filter by modelling the signal locally as a stationary 
process that results in the filter to estimate the original pixel value f(m,n) by the following 
relation (Bankman, 2009):

   (4)

 where g is the corrupted image, μg is the local mean of signal g, σ2
g   is the local variance and σ2

η  
is the variance of noise: it is constant if noise is signal-independent, it varies if noise is signal-
dependent and in the latter case it should be estimated locally with the knowledge of the type 
of the noise.

3.4. The ALNR filter

ALNR filters were used to remove the watermark from the watermarked component in binary 
image, and the difference between the result and watermarked component is used to acquire an 
extracted watermark (Chotikawanid et al., 2018).
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ALNRF is based on the following formula:

     

(5)

where h(i,j) is the new image, f(i,j) the noisy image pixel value at position i and j, σ2
η  noise variance, 

μL and σ2
L , local mean and dispersion near pixel (i,j), we know that local mean (i,j):

       (6)

and local variance (i,j):

 
    (7)

From Eq. 3, the behaviours of the filter can be characterised into 3 conditions:
if σ2

η  is equal to zero, the result of the filter is a noisy image,
if σ2

L  is much more than σ2
η  , h(i,j) is equal to f(i,j) to preserve edge information, 

if σ2
η  is equal to or greater than σ2

L  the output of arithmetic mean filter in rectangular window 
size m×n.

To improve the performance of the adaptive filter, a new algorithm has been developed that 
adds to the basic one the advantage of operating, when necessary, with a smaller window, near 
and in the presence of those small details that, by increasing the local variance, increases the 
ratio with the noise variance, beyond a certain threshold, supplied to the filter as an argument 
(https://github.com/infovillasimius/imadvfilter/blob/master/README.md).

Put simply, the basic function for thresholding creates the binary image from grey level 
ones by turning all pixels below some threshold to zero and all pixels above that threshold 
to one. If g(i,j) is a threshold version of f(i,j) at some global threshold T, g is equal to 1 if f(x,y) ≥ T  
and zero otherwise. Thus, the new image obtained by thresholding is expressed by the 
following law:

  
      (8)

where T is calculated by Eq. 5.
If the ratio between the variances exceeds this threshold, the algorithm tries to check whether 

by decreasing the filter size, for that point, the ratio drops back below the threshold and, in this 
case, applies the basic formula. Otherwise the filter dimensions will continue to decrease until 
the minimum size (3×3) is reached. It, then, proceeds to check the value of the ratio of the 
variances and, if it is greater than 1, always applies the basic formula, replacing, otherwise, the 
value of the current pixel with the average of the 3×3 around it.
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4. Application of the techniques to synthetic seismic images

Synthetic Trace is useful for creating model input data for any filter testing. We first tested 
the 2DAW filter, AM filter, and the ALNR filter on the synthetic seismic image. In order to test 
the applicability of our filters, from a geological model composed of three slightly inclined layers 
(Fig. 3), we generate a mini seismic section composed of 48 traces, the intertraces distance is 25 
m. The synthetic seismogram is obtained by the convolution of Klauder synthetic wavelet with 
seismic reflection coefficients. We note that Klauder wavelet is the autocorrelation of a vibroseis 
sweep and has the same spectrum as a vibroseis sweep of any given length and frequency range. 
In our case the length of vibroseis sweep is 5000 ms and the frequency range is 12-72 Hz. It 
is worth noting that we were aware of the fact that the geological model attenuates the high 
frequencies when increasing in depth. By adding 25% of random noise to the synthetic model, 
this operation gives traces which have both data and noise for filters testing (Fig. 4a).

In order to test the efficiency of 
the filters to attenuate random noise, 
different windows are tested (3×3, 
5×5, 7×7, 9×9, and 11×11 pixels) in 
a 2DAW filter (Fig. 4b), ALNR filters 
(Fig. 4c), and an AM filter (Fig. 4d). As 
shown, the difference between the 
original and filtered image is clear 
with inhomogeneous brightness and 
contrast. The root mean square (RMS) 
indicates the level of enhancement in 
the processed image (Fig. 4e). We found 
that for any filter, for the given values of 
the window it gives an empirically good 
denoised image.

5. Application to real post-stack seismic section

In the following discussion on the 2DAW filter and AM filter for data filtering, we will assume 
that the seismic section is a matrix of m rows and n columns with all necessary values outside 
the seismic section being zero. The proposed filter operates on a α-by-α; α must be an odd 
value; the single and combined use of 2DAW and AM filters were applied to a stacked portion 
of a seismic section from the north-western African Sahara. The typical receiver interval is 
25 m, the shot interval is 25 m, the field raw stack section consists of nearly 320 traces, the 
distance between the Common Depth Point (CDP) is 12.5 m, the recording time length is 
around 1 s, and the data were resampled at 4 ms after processing. The sweep bandwidth has a 
frequency range of 8-72 Hz and 12 s time length, using a vibrator source. The fold of coverage 
is 60, each stacked trace is obtained by refraction statics and NMO correction. The raw stacked 
data is shown in Fig. 5a. Despite the stacking procedure, strong random noise still remains on 
the stacked section, in addition to poor lateral continuity. The results are compared with the 
classic and eminent F-K filter.

This seismic section shows strong dipping events and a faulted structure between trace bin 
number 151 and 225 as indicated by vertical quality degradation. Note the strong noise, which 

Fig. 3 - Geologic model for generating the synthetic section 
(S = source and R = receiver).
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masks reflectors and other seismic events, appear in most sections. The adaptive filter is more 
selective than a comparable linear filter, preserving edges and other high-frequency parts of 
an image. In this section, we utilise one real field data example to demonstrate the successful 
performance of the 2DAW filter, AM filter, and ALNR filter.

6. Results and discussion

To demonstrate the successful performance of the used filter, many values of windows 
(mask) were tested on a seismic image. Some seismic events are attenuated by the F-K filter, 
where F is the frequency and K refers to wave-number, for example those located between 0.8 
to 1.0 s in time and from CDP 50 to 75 and others situated between 0 to 0.6 s in time and from 
CDP 225 to 301 (Fig. 5b), however, these events are preserved when using adaptive filters. Fig. 
5c displays the complete clean seismic section, which contains the clearest events, but some 
noise that still persists located at 0 to 1 s and from CDP 151 to 225 corresponding to the fault 

Fig. 4 - Synthetic seismic section; a) original synthetic section by adding 25% of random noise; b) section filtered by 
2DAW filter; c) section filtered by ALNR filter; d) section filtered by AM filter; e) comparison graph of RMS level for raw 
and section obtained by different filters.
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plane; in this case we have applied the AM filter. In Fig. 5d, the raw stack section is filtered by 
ALNF using window equal to 9, variance equal to 3, and 3 for threshold value, and it can be 
seen that random noise is filtered as a whole. With the increase in the order of the window of 
2DAW filter, (9×9), as shown in Fig. 5e, the quality of the final document becomes increasingly 
acceptable. Lastly, we applied the two filters together, the quality in this case of the seismic 
section is even better and the noise corresponding to the fault plane is better attenuated than 
before (Fig. 5f).

To quantitatively compare the reconstruction performance, we use the signal-to-noise ratio 
(SNR) metric defined by the following formula:

        (9)

Fig. 5 - Filtered sections: a) raw stack section; b) F-K filter; c) AM filter; d) ALNR filter; e) 2DAW filter with window size 
of 9×9; f) 2DAW filter with 9×9 window + 2 pass AM filter.
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where d0 is the clean and complete data and d is the noisy or incomplete data (Wu and Bai, 
2018). To show the effect of adaptive filters we calculate the SNR for each filter.

The numerical results of the study are presented in Fig. 6a, showing values of SNR for the raw 
stack processed by different filters. The initial section has a low estimated value (SNR = 1.2842), 
whereas the ratio is equal to 2.4215 when we use the AM filter and improves to 5.3822 when 
using the 2DAW filter with a 9×9 window. The best quality is obtained when using both filters 
such as the AM filter and 2DAW filter (SNR = 5.4735). Also, we note that the use of the ALNR filter 
alone (Fig. 6b) improves the seismic quality in the same way as in the case when the combined 
filters are used. It is clear that using various filters and techniques enhances the SNR of the data 
and concretely improves the seismic image quality.

As the random noise has a random value we can, then, measure the standard deviation of 
the image. Standard deviation is the most widely used measure of variability or diversity used 
in statistics. In terms of image processing, it shows how much variation or “dispersion” exists 
from the average (mean, or expected value) (Longkumer et al., 2014). A high standard deviation 
indicates that the data points are spread out over a large range of values (Fig. 7e), whereas a low 
standard deviation indicates that the data points tend to be very close to the mean (Fig. 7f). A 
simple comparison between the two graphs shows that the standard deviation is reduced to one 
third, from 120 to 40, after filtering.

6.1. Structural similarity comparison

During the last two decades, the structural similarity index (SSIM) between two images, 
introduced by Wang et al. (2004), is an efficient tool for assessing image quality and has become 
an accepted standard among image quality metrics (Dosselman and Yang, 2009). The SSIM 
formula takes into account luminance, contrast, and structure.

Fig. 6 - Comparison of SNR: a) 1 = raw section, 2 = AM filter, 3 = two pass AM filter, 4 = two pass AM filter + 2DAW 5×5, 5 
= two pass AM filter + 2DAW 9×9, 6 = 2DAW 3×3, 7 = 2DAW 5×5, 8 = 2DAW 7×7, 9 = 2DAW 7×7 + 2 AM filter, 10 = 2DAW 
9×9, 11 = 2DAW 9×9 + 2 pass AM filter; b): ALNR, 1, 2, 3, and 4, window size of 3, 5, 7, and 9 respectively.
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After normalising each image, we have calculated the SSIM and the 2D coefficient correlation 
between unfiltered and filtered images (Table 1).

Table 1 - SSIM and CORR2 values for each filter.

Filter Type SSIM CORR2

2DAW 0.98 0.20

AM 0.99 0.55

ALNR 0.98 0.20

2DAW+AM 0.98 0.32

As shown in Table 1, all values of SSIM are practically the same (0.98 and 0.99) and indicate 
good structural similarity. The CORR2 measures the correlation coefficient between an image 
and the same image processed with a different filter; we find that these values are lower than 
the unit because of the filtering effect that improves image quality.

6.2. Spectral comparison

Discrete Fourier Transform (DFT) is a commonly used and vitally important function for a vast variety 
of applications. Fourier image analysis simplifies computations by converting complex convolution 
operations in the spatial domain to simple multiplications in the frequency domain. Due to their 
computational complexity, DFT often becomes a computational constraint for applications requiring 
high throughput and near real-time operations. 2D images are, in general, non-periodic, but are 
assumed to be periodic while calculating their DFT (Mahmood et al., 2015). Fig. 7a shows the spectral 
magnitude of a raw stack section, whose frequency content is broad, ranging from 200 to 600 in x bin 
number. In Fig. 7b, corresponding to the image filtered by ALNR, the content frequency is different in 
this case and the spectrum becomes more energetic. Fig. 7c illustrates image spectra for the seismic 
section when the AM filter was used. We note a certain difference with the one obtained on the original 
section, this may be interpreted owing to the fact that some noise components have been attenuated 
by the filtering operation. Finally, the spectrum of the section filtered by the two filters, namely AM filter 
and 2DAW filter, is shown in Fig 7d. In this case, we can see that the maximum of magnitude spectrum 
has become more centred and enhanced in the centre and attenuated at the edges.

6.3. Noise comparison

The difference between the unfiltered and filtered image, obviously after normalisation, 
allows comparing the degree of noise attenuated by each filter (Fig. 8). Fig. 8a represents the 
noise removed by the 2DAW filter; the rectangle in red shows reflections attenuated by the 
operation of filtering, the noise attenuated by the AM filter is shown in Fig. 8b, while that 
attenuated by ALNR and 2DAW + AM filters is shown in Figs. 8c and 8d, respectively. As we know 
the purpose of filtering is to attenuate the noise without damaging the signal, and it can be seen 
that in the case of the ALNR filter, the attenuation of reflections is relatively low. The power of 
noise is also calculated for each filtering operation (Figs. 8e and 8f): we can see that the noise 
attenuated by ALNR is important in power (represented in blue colour).



13

Bull. Geoph. Ocean., XX, XX-XXAtt enuati on of random noise using advanced adapti ve fi lters

Fig. 7 - 2D spectrum of secti ons: a) raw stack; b) ALNR fi lter; c) AM fi lter; d) 2DAW 9×9 window size + 2 pass AM fi lter, 
and standard deviati on for: e) raw stack; f) 2DAW 9×9 + 2 pass AM fi lter.
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Fig. 8 - Difference between raw seismic image and filtered seismic image: a) 2DAW filter; b) AM filter; c) ALNR filter; d) 2DAW 
+ AM filter; e) the power of noise for each residual image; f) zoom of Fig. 8e between 300 and 400 channel number.

7. Conclusion

Through this study we were able to explore two kinds of filters, separately and combined, 
namely the 2DAW and AM filters, and new application of the ALNR filter on a seismic image 
in order to reduce random noise. The results are compared with the classic and eminent 
F-K filter: the proposed filters have an obvious advantage over the conventional filter. By 
comparing different filtered seismic sections and their spectra, it is recommended to use 
combined adaptive Wiener and AM filters. We also noted no blurring in the image when 
using the ALNR filter, which has an advantage over the Wiener filter. The validation of such 
filters was carried out on synthetic and real stacked seismic sections. Nevertheless, the 
quality of the filtered image remains dependent on the good choice of filter parameters, as 
well as the size of the window.
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