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ABSTRACT Modified Particle Swarm Optimisation (MPSO) is an improved algorithm of Particle 
Swarm Optimisation (PSO), where the learning factors or acceleration coefficients (c1 
and c2) and inertia weight (w) change during iteration as ability of finding the optimal 
solution can be enhanced. In the MPSO algorithm, a new concept of the velocity of 
the individual (particle) modification, the evolution of the particle best value (Pbest) 
and global best value or best value in the group (Gbest), is presented as an acceptable 
convergence in the MPSO algorithm solutions is found. An advantage of the MPSO 
over the PSO is that it does not stick: it does not stick to a local minimum giving, then, 
a premature convergence. We have tested the proficiency of the MPSO and PSO using 
the theoretical gravity caused by buried sources with simple geometry, such as spheres, 
horizontal cylinders, and vertical cylinders, with and without added random noise. In 
comparison with the PSO algorithm, the MPSO inversion gives the most satisfactory 
results for the noise-free and noise-corrupted theoretical gravity data. We have also 
applied the MPSO approach for inverse modelling of the five residual gravity anomalies 
due to various causative mass from the different parts of the world, as the estimated 
results are compared with other previous researches.

Key words:  residual gravity, Modified Particle Swarm Optimisation (MPSO).

1. Introduction

Non-uniqueness is a feature in the linear inverse modelling of residual gravity anomalies. This 
feature could assign a set of the measured gravity field data on the ground surface to the several 
geometrical distributions of the subsurface mass with various shapes and physical parameters 
such as density and depth. One way to eliminate this ambiguity is to set a suitable geometry 
on the anomalous body with a known density followed by inversion of gravity anomalies 
(Chakravarthi and Sundararajan, 2004). Although considering models with simple geometric 
shapes may not be geologically realistic, they are usually sufficient to analyse sources of many 
isolated anomalies (Abdelrahman and El-Araby, 1993a, 1993b). The interpretation of such an 
anomaly aims essentially at estimating the parameters such as shape, depth, and radius of 
the gravity anomaly causative body such as geological structures, mineral mass and artificial 
underground structures.

Several graphical and numerical methods have been developed to analyse residual gravity 
anomalies caused by simple bodies, such as Saxov and Nygaard (1953) and Bowin et al. (1986). The 
methods include, for example, Fourier transform (Odegard and Berg, 1965; Sharma and Geldart, 
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1968), Mellin transform (Mohan et al., 1986), Walsh transforms techniques (Shaw and Agarwal, 
1990), ratio techniques (Hammer, 1977; Abdelrahman et al., 1989), least-squares minimisation 
approaches (Gupta, 1983; Lines and Treitel, 1984; Abdelrahman, 1990; Abdelrahman et al., 
1991), different neural networks (Eslam et al., 2001; Osman et al., 2006, 2007; Al-Garni, 2013; 
Eshaghzadeh and Kalantari, 2015; Eshaghzadeh and Hajian, 2018), and effective quantitative 
interpretations using the least squares method based on the analytical expression of simple 
moving average residual gravity anomalies (Gupta, 1983). Abdelrahman and El-Araby (1993a, 
1993b) introduced an interpretive technique based on fitting simple models convolved with the 
same moving average filter as applied to the measured gravity. A simple method proposed by 
Essa (2007) is used to determine the depth and shape factor of simple shapes from residual 
gravity anomalies along the profile. Another automatic method, the least squares method, was 
proposed by Asfahani and Tlas (2008), by which the depth and amplitude coefficient can be 
determined. Eshaghzadeh et al. (2020) developed a simultaneous nonlinear inversion based on 
the Marquardt optimisation to estimate the radius and depth parameters of the buried structures 
with simple geometry from gravity data.

Particle Swarm Optimisation (PSO) is a relatively recent method and one of the most popular 
nature-inspired heuristic optimisation algorithms developed by Kennedy and Eberhart (1995). PSO 
has few applications for geophysical problems (Alvarez et al., 2006; Shaw and Srivastava, 2007). 
However, PSO has been successfully employed in some fields of geophysics, such as inversion of 
self-potential of idealised bodies’ anomalies (Monteiro Santos, 2010), gravity inversion of a fault 
by PSO (Toushmalani, 2013a, 2013b), gravity inversion and uncertainty assessment of basement 
relief via PSO (Pallero et al., 2015), application of PSO for gravity inversion of 2.5D sedimentary 
basins (Singh and Singh, 2017), 2D dipping dike magnetic data interpretation using a robust PSO 
(Essa and El-Hussein, 2017), inversion of residual gravity anomalies using tuned PSO (Roshan and 
Singh, 2017), gravity data interpretation using PSO (Essa and El-Hussein, 2018a, 2018b), and PSO 
to interpret magnetic anomalies caused by simple geometrical structures (Essa and El-Hussein, 
2018a, 2018b).

In this paper, we have proposed the Modified Particle Swarm Optimisation (MPSO) algorithm 
to enhance the performance of the PSO algorithm. We have applied the MPSO algorithm to 
estimate the buried causative mass parameters, such as depth (z), radius (R), density contrast 
(ρ), shape factor (q) and axis location (x0) from the gravity anomaly. This method is examined by 
several noise-free and noise-corrupted synthetic gravity data, and also five real gravity data from 
Iran, USA, and Senegal.

Fig. 1 - a) Sphere and infinite horizontal cylinder models, b) semi-infinite vertical cylinder model.
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2. Gravity of simple geometry

Gravity fields of many simple bodies are symmetric around the location of the source. For 
example, the general gravity g effect caused by simple models (such as a sphere, an infinite 
horizontal cylinder, and a semi-infinite vertical cylinder as shown in Fig. 1) at point p(xi, z) is given 
as (Abdelrahman et al., 1989):

(1)

where z is the depth, q is a value (shape factor) characterising the nature of the source (q = 
0.5 for a vertical cylinder, q = 1.0 for a horizontal cylinder, and q = 1.5 for a sphere) and K is an 
amplitude factor related to the radius, depth, and density contrast between the target and the 
surroundings ρ of the source, as:

(2)

Here, G is the universal gravitational constant.

3. Modified Particle Swarm Optimization (MPSO)

MPSO is a global stochastic evolutionary algorithm based on population distribution, which is 
inspired by the reciprocal behaviour of the various species or individuals (called also particles) of 
a social such as a flock of birds, a swarm of bees, and a school of fish.

There are many references describing the performance of the PSO algorithm using the various 
explanations and different wording such as Monteiro Santos (2010) and Singh and Singh (2017). 
Here, we try to illustrate the PSO technique with the simple expressions. The PSO algorithm 
can be employed for optimising N individuals (multivariable) in a search space. Indeed, the 
individuals in this research are the z, R, ρ, q, and x0 parameters.

Before entering into the optimisation process, it is necessary to define the initial values for the 
learning factors [also called acceleration coefficients (c1 and c2)], inertia weight (w) and velocity 
component (V). This terminology will be characterised subsequently. Moreover, the theoretical gravity 
anomaly (for synthetic models) or measured ones, the search range for each parameter, number of 
primary models, number of iterations and allowable error between the computed gravity anomalies 
and observed ones, should be determined.

The seek space for the q is constrained between 0.25 and 1.75 for all models (0.25 < q ≤ 1.75). 
Considering the evaluated q using MPSO the buried mass shape is assigned where 0.25≤q<0.75, 
0.75 ≤ q <1.25, and 1.25 ≤ q ≤1.75 indicate an under-surface structure with a form of vertical 
cylinder, horizontal cylinder, and sphere, respectively. The range of variations for the other 
model parameters is not constant and based on the geological information and qualification of 
the gravity field of the region under investigation.
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The nonlinear inverse modelling by the PSO algorithm begins by specifying the initial models 
automatically based on a range of defined values for each parameter, as each model includes 
the values of the five parameters. These present models are also considered as the initial 
population or initial Pbest (particle best values or particle best model). Among the initial Pbest, 
the parameters of the best model or initial Gbest [best values (model) in the group or global best 
values (model)] are chosen.

Before starting the iteration process of the MPSO algorithm, a primary arbitrary speed is 
assigned to each of the particle (parameter), of the initial swarm. The value of each particle 
(parameter), as one of the potential computational variables in the MPSO algorithm, changes 
at each iteration of the evaluation process. In other words, this value is refreshed during the 
iteration so that the particle reaches its best value, which is known as Pbest. Accordingly, each 
particle attempts to adjust its value in the present velocity of the operation of the algorithm. At 
each iteration, the new Gbest is determined from the new Pbest, which has been estimated in 
the same iteration. To obtain a new value of the particle, the velocity of the particle is updated 
using the following equations, given by Sweilam et al. (2007):

(3)

(4)

where,  is the present velocity of the individual (particle) i at the tth iteration,  is the current 
position (value) of the ith particle at the tth iteration, RAND() is a random number between 0 
and 1, c1 and c2 (learning factors) are positive constant numbers known as cognitive coefficient 
and social coefficient, respectively, which control the individual and the social behavior, and 
w is an inertial coefficient whose value is usually slightly less than 1 (Monteiro Santos, 2010). 
Generally, the Pbest and Gbest are accelerated by two operators c1 and c2, and two random 
numbers produced between [0, 1] whereas the current movement is multiplied by a w. In the 
PSO algorithm, for w the minimum (wmin) and maximum (wmax) limits are defined until its amount 
is bounded in the range [wmin, wmax] at each repetition.

Based on Shi and Eberhart (1998), we have defined the alteration of the w of the particle by 
a decreasing strategy linearly at each iteration in the following form:

(5)

where is current iteration, and Tmax is the maximum number of iterations.
Then, the fundamental procedure of PSO algorithm lies in quickening each individual 

towards its Pbest and the Gbest values with a random weighted acceleration at each 
iteration. It is worth noting that the maximum velocity (Vmax) indicates the highest amount 
of location coordinates variation that can take place during each iteration. As a matter of 
fact, the concept of maximum velocity was introduced to avoid outflow and divergence (Das 
et al., 2008).

When the differences between the observed gravity field data and the generated one from 
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the estimated model is minimised, the best exact values of the particles (model parameters) are 
obtained. For this purpose, we use the following simple objective function (Q):

(6)

where N is the number of the gravity measurement point,  and  are the gravity anomaly 
observed and calculated at the point P(x΄i), respectively.

The learning factors (c1 and c2) are traditionally both equal to 2 (Sweilam et al., 2007). 
However, based on recent literature, electing c1 more predominant than c2 and c1 + c2 ≤ 4 may 
present better conclusions (Parsopoulos and Vrahatis, 2002).

It can be observed that larger or smaller values of two factors c1 and c2 are not effective in 
the optimisation of parameters (Yi, 2016). For improving the proficiency of PSO, the values of 
two operators c1 and c2 are updated by two automatic linear expressions, respectively, at each 
iteration, as:

(7)

(8)

                                                               
With this strategy, learning factor c1 can be decreased and learning factor c2 can be increased 

with the addition of the number of iterations, as c1 + c2 = 4. The recovery of learning factors 
gradually reduces the trapping of the individual in local minima and improves the global search 
capability of particles in the whole search space and the ability to find the optimal solution when 
the number of iterations is increased. Fig. 2 shows the flowchart of MPSO.

4. Theoretical example

In this paper, the PSO and MPSO inversion process is repeated 50 and 10 times, respectively, 
by using a different initial population, and a model which having the least Q value (i.e. error) 
is selected as the best-fitting model. For all the synthetic models that will be investigated, 
according to the defined ranges for the parameters, one hundred primary models are randomly 
manufactured, as these ranges include the assumed values for the initial model. Moreover, 
the gravity sampling was performed with 5 m intervals along a 100 m profile. The number of 
iterations and allowable errors are assigned as 150 and 0.001 mGal, respectively. The variations 
of the search range for the q parameter is constant, i.e. 0.25 ≤ q ≤ 1.75. The geometric shape of 
the anomaly causative body is determined considering the evaluated q using MPSO, as for 0.25 
≤ q < 0.75, 0.75 ≤ q < 1.25, and 1.25 ≤ q ≤ 1.75 the buried mass shape is simulated as a vertical 
cylinder, horizontal cylinder, and sphere, respectively.
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4.1. Sphere model

Fig. 3 (black circles) shows the computed 
theoretical gravity field variations due to a 
sphere model with the parameters h = 25 m 
and R = 10 m, where the maximum gravity is 
the centre of the profile. The density contrast 
is given as ρ = 2 g/cm3. The search range 
for the parameters of the sphere model is 
indicated in Table 1. We have employed the 
MPSO algorithm to invert this theoretical 
gravity data. Figs. 4a to 4e demonstrate the 
variations of the z, R, q, ρ parameters and 
Q (error) values versus iteration number, 
respectively. The estimated final Q value is 
0.013. The parameter values at the 126th 
iteration remain constant to the last iteration. 
The obtained values for the parameters are 
z = 25.19 m, R = 10.04 m, ρ = 2.03 g/cm3,  
q = 1.52, and x0 = 0 m (Table 1). The generated 
gravity from the resulted parameters by 
MPSO is shown in Fig. 3 (black curve).

Table 1 - Initial assumptions and estimated numerical results for the noise-free and noise corrupted synthetic gravity 
anomaly of the sphere model.

x0 (m)qρ (g/cm3)R (m)z (m)QParameter

01.502.01025-Assumed

-5 to 50.25 to 1.750.5 to 3.51 to 2010 to 40-Ranges

01.522.0310.0425.190.013Noise free
MPSO

01.582.1011.1826.130.027510% noise

01.572.099.2125.820.026Noise free
PSO

-0.481.652.4712.3322.400.078210% noise

Fig. 2 - Flowchart of IPSO.

Fig. 3 - Synthetic gravity anomaly over the sphere model (circles) and generated gravity from the MPSO inversion (curve).
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The ability of the MPSO algorithm is studied by adding 15% random noise to the gravity 
anomaly of the sphere model using the following equation:

(9)

where  is the noise corrupted synthetic data at xi, and RAND(i) is a pseudorandom 
number whose range is between 0 to 1.

Fig. 5 (black circles) shows the noise-corrupted theoretical gravity data of the sphere 
model. The variations of the z, R, ρ, q parameters 
and Q (error) values versus iteration number during 
inversion using MPSO are illustrated in Figs. 6a to 6e, 
respectively. The evaluated final Q value for the noisy 
gravity data related to the sphere model is 0.0275 
as has been obtained at the 69th iteration. Thus, the 
values of the model parameter at the 69th iteration 
remain constant to the last iteration. Fig. 5 (curve) 
shows the generated gravity response by the inverted 
parameters from the contaminated synthetic gravity 

Fig. 4 - Variations of the z, R, q, ρ parameters and 
Q values versus iteration number for the synthet-
ic gravity anomaly over the sphere model.

Fig. 5 - Synthetic gravity anomaly over the sphere model (circles) 
with 15% added noise and generated gravity from the MPSO inver-
sion (curve).

data using MPSO whose values are z = 26.13 m, R = 11.80 m, ρ = 2.100 g/cm3,  
q = 1.580, and x0 = 0 m, as are indicated in Table 1. The PSO inversion of the gravity data due to this 
synthetic model estimated a Q error of 0.0260 and 0.0782 for noise-free and noisy gravity data, 
respectively, where these values were obtained at the last iteration (Table 1).

4.2. Horizontal cylinder model

The black circles in Fig. 7 demonstrate the theoretical gravity field variations over a horizontal 
cylinder model with the parameters h = 30 m and R = 15 m, where the maximum gravity is 
the centre of the profile. The density contrast is given as ρ = 1 g/cm3. The search range for the 
parameters of the horizontal cylinder model is given in Table 2. We have employed the MPSO 
algorithm for inverting this theoretical gravity data. Figs. 8a to 8e show the variations of the z, R, 
q, ρ parameters and Q (error) values versus iteration number, respectively. The estimated final 
Q value is 0.018. The parameter values at the 29th iteration remain constant to the last iteration. 
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Thus, the best obtained values at the 29th iteration for the model parameters are z = 30.23 m, R = 
15.03 m, ρ = 1.02 g/cm3, q = 0.997, and x0 = 0 m (Table 2). The generated gravity from the resulted 
parameters by MPSO is shown in Fig. 7 (black curve).

We have tested the efficiency of the MPSO algorithm in existence of noise. To this end, a 
set of 15% random noise based on Eq. 9, is distributed among the synthetic gravity data of the 
horizontal cylinder model.

Fig. 9 (black circles) shows the contaminated synthetic gravity data of the horizontal cylinder 
model. The variations of the z, R, ρ, q parameters and Q values versus iteration number during 
inversion using MPSO are displayed in Figs. 10a to 10e, respectively. The estimated final Q value 
for the noise-corrupted gravity data related to the horizontal cylinder model is 0.037 as has been 
obtained at the 145th iteration. Thus, the values of the model parameter at the 145th iteration 
remain unchanged to the last iteration. Fig. 9 (curve) shows the generated gravity response by 
the inverted parameters from the noisy theoretical gravity data using MPSO whose values are z 
= 31.79 m, R = 14.66 m, ρ = 0.94 g/cm3, q = 0.991 and x0 = 0 m, as are tabulated in Table 2. The Q 
errors estimated by PSO inversion of the gravity data due to horizontal cylinder model are 0.0310 
and 0.0829 for noise-free and noisy gravity data, respectively, where these values were obtained 
at the last iteration (Table 2).

Table 2 - Initial assumptions and estimated numerical results for the noise-free and noise-corrupted synthetic gravity 
anomaly of the horizontal cylinder model.

x0 (m)qρ (g/cm3)R (m)z (m)QParameter

0111530-Assumed

-5 to 50.25 to 1.750.5 to 3.05 to 3010 to 50-Ranges

00.9971.0215.0330.230.018Noise free
MPSO

00.9910.9414.6631.790.03710% noise

01.0621.0815.6330.840.031Noise free
PSO

0.450.861.1416.4833.640.082910% noise

Table 3 - Initial assumptions and estimated numerical results for the noise-free and noise-corrupted synthetic gravity 
anomaly of the vertical cylinder model.

x0 (m)qρ (g/cm3)R (m)z (m)QParameter

00.51.51240-Assumed

-5 to 50.25 to 1.750.5 to 3.55 to 3020 to 60-Ranges

00.4961.50211.8739.970.0042Noise free
MPSO

0.270.5111.5712.7440.450.017010% noise

00.5081.5412.6940.820.0740Noise free
PSO

1.640.4201.6314.1742.640.279010% noise
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4.3. Vertical cylinder model

The theoretical gravity field over a vertical cylinder 
model with the parameters h = 40 m and R = 12 m, 
where the maximum gravity is the centre of the profile, 
is demonstrated in Fig. 11 by the black circles. The 
density contrast is considered as ρ = 1.5 g/cm3. The 
search range for the parameters of the vertical cylinder 
model is indicated in Table 3. We have also applied the 
MPSO algorithm for interpreting this theoretical gravity 
data. Figs. 12a to 12e present the variations of the z, R, 
q, ρ parameters and Q values versus iteration number, 

Fig. 6 - Variations of the z, R, q, ρ parameters and 
Q values versus iteration number for the noisy 
synthetic gravity anomaly over the sphere model.

Fig. 7 - Synthetic gravity anomaly over the horizontal cylinder 
model (circles) and generated gravity from the MPSO inversion 
(curve).

Fig. 8 - Variations of the z, R, q, ρ parameters and 
Q values versus iteration number for the synthet-
ic gravity anomaly over the horizontal cylinder 
model.

Fig. 9 - Synthetic gravity anomaly over the horizontal cylinder 
model (circles) with 15% added noise and generated gravity 
from the MPSO inversion (curve).

respectively. The resulted final Q value is 0.0042. The 
parameter values at the 66th iteration remain constant 
to the last iteration. Thus, the best obtained solutions 
at the 66th iteration for the parameters of the vertical 
cylinder model are z = 39.97 m, R = 11.87 m, ρ = 1.502  
g/cm3, q = 0.496, and x0 = 0 m (Table 3). The inverted 
gravity from the resulted parameters by MPSO is 
shown in Fig. 11 (black curve).
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The effect of random noise on the MPSO 
algorithm efficiency has been investigated by adding 
10% noise to the response of the vertical cylinder 
model (black circles in Fig. 11). For this purpose, in 
Eq. 9 we replaced 0.10 instead of 0.15.

Fig. 13 (black circles) shows the noise-corrupted 
synthetic gravity data of the vertical cylinder model. 
The variations of the z, R, ρ, q parameters and Q 
values versus iteration number during inversion 
using MPSO are indicated in Figs. 14a to 14e, 

Fig. 10 - Variations of the z, R, q, ρ parameters 
and Q values versus iteration number for the 
noisy synthetic gravity anomaly over the hori-
zontal cylinder model.

Fig. 11 - Synthetic gravity anomaly over the vertical cylinder model 
(circles) and generated gravity from the MPSO inversion (curve).

respectively. The inferred final Q value for the 
noise-corrupted gravity data related to the vertical 
cylinder model is 0.0137 as has been obtained at 
the 103th iteration. Therefore, the values of the 
model parameter at the 103th iteration remain 
unchanged to the last iteration. Fig. 13 (curve) shows 
the generated gravity response by the estimated 
parameters from the noisy theoretical gravity data 
using MPSO whose values are z = 40.45 m, R = 12.74 
m, ρ = 1.57 g/cm3, q = 0.511, and x0 = 0.27 m, as 
are summarised in Table 3. The interpretation of the 
gravity data due to vertical cylinder model using PSO 
algorithm evaluated a Q error of 0.074 and 0.279 
for noise-free and noisy gravity data, respectively, 

Fig. 12 - Variations of the z, R, q, ρ parameters 
and Q values versus iteration number for the 
synthetic gravity anomaly over the vertical cyl-
inder model.

Fig. 13 - Synthetic gravity anomaly over the horizontal cylinder 
model (circles) with 15% added noise and generated gravity 
from the MPSO inversion (curve).
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where these values were achieved at the last iteration (Table 3).

Table 4 - Parameters search range which are considered for the field examples.

x0 (m)ρ (g/m3)R (m)z (m)Parameter
Field example

-1000 to 1000-1.0 to -3.51200 to 32002500 to 6500Humble Dome (USA)

-0.5 to 0.5-1.0 to -3.50.2 to 2.00.5 to 5.0Aqueduct (Tehran, Iran)

15 to 40-0.5 to -3.0 5 to 255 to 50 Bitumen (Dehloran, Iran)

-5 to 50.5 to 3.52 to 252 to 15Chromite (Sabzevar, Iran)

-1000 to 10000.5 to 4.01000 to 35001500 to 6000Leona (Saint-Louis, Senegal)

5. Real gravity examples

In this paper, five real gravity data from various regions of the world are inverted using 
the MPSO algorithm and the estimated parameters are compared with results obtained from 
previous evaluations made by other inverse modelling methods.

Based on the assumed search ranges, 120 primary models are randomly considered for the 
causative mass of all the real gravity anomalies data. The number of iterations and permissible 
errors for the MPSO algorithm are determined as 150 and 0.005 mGal, respectively. The 
parameters search range for the regions under investigation are reported in Table 4. These 
defined boundaries have been chosen based on the geological information.

5.1. Humble Dome gravity anomaly, Texas, USA

The black circles in Fig. 15 show the residual gravity anomaly profile over the Humble Dome 
near Houston (Texas) that has been extracted from Nettleton (1976). The Humble Salt Dome is 
a significant geological structure for its oil and gas potential. The residual gravity anomaly over 
this salt dome was also interpreted by several authors and different methods, such as Shaw and 
Agarwal (1990), Abdelrahman et al. (2001), Tlas et al. (2005), Asfahani and Tlas (2012), Mehanee 
(2014), Biswas (2015), Singh and Biswas (2016), and Abdelrahman and Gobashy (2017). The results 
are summarised in Table 5.

Table 5 - Estimated parameters for the Humble Dome Anomaly, Texas, USA. Asterisks indicate the value of q that has 
been considered as a constant.

x0 (m)qρ (g/m3)R (m)z (m)Parameter
MethodResearcher(s)

101.47--4590adaptive simulated 
annealingTlas et al. (2005)

-1.48--4580fair function minimizationAsfahani and Tlas 
(2012)

-1.50*--4620simultaneous regularized 
inversionMehanee (2014)

701.50*--4400very fast simulated 
annealingBiswas (2015)

0.08±0.081.50*2.050±1.2601937±5734600±40global particle swarm 
optimization

Singh and Biswas 
(2016)

-1.40--5050statistical approachAbdelrahman and 
Gobashy (2017)

-181.538-2.10521004564Present method (MPSO)
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We applied the MPSO for inverting the gravity 
anomaly profile over the Humble Dome where the 
residual gravity field has been digitised at 33 points 
with an interval of about 600 m along the profile. 
Figs. 16a to 16e show the variations of the z, R, ρ, 
q parameters and Q values versus iteration number 
during inversion, respectively. The least amount of 
the Q value is 0.076 mGal, which was acquired in 
the 67th iteration and this value remains invariable 
to the last iteration. The obtained values in the 67th 
iteration are z = 4564 m, R = 2100 m, ρ = -2.105 g/
m3, q = 1.538, and x0 = -18.00 m, as reported in Table 
5. The produced gravity response by the estimated 
parameters using MPSO is shown in Fig. 15.

Fig. 14 - Variations of the z, R, q, ρ param-
eters and Q values versus iteration number 
for the noisy synthetic gravity anomaly over 
the vertical cylinder model.

Fig. 15 - Observed gravity anomaly and MPSO inverted gravity 
anomaly due to the Humble Dome (USA).

Fig. 16 - Variations of the z, R, q, ρ parameters 
and Q values versus iteration number for the 
gravity anomaly over the Humble Dome (USA).

5.2. Aqueduct gravity anomaly, Tehran, Iran

The black circles in Fig. 17 show a negative residual 
gravity anomaly measured over an aqueduct located 
in Tehran, Iran. The distance between the sampling 
stations is 0.2 m over a 2.2 m profile. The MPSO was 
used to find the optimal values of the parameters of 
the aqueduct structure. The variations of the model 
parameters and the error reduction versus the 
iteration number, which indicate the improvement 
of the structural parameter values, are shown in 
Figs. 18a to 18e. The minimum error with a value of 
0.0067 mGal was estimated at the end of the 114th 
iteration and this value remained fixed to the last 
iteration. The estimated parameters at this iteration 
are z = 2.67 m, R = 0.84 m, ρ = -2.812 g/m3, q = 
1.07, and x0 = -0.06 m, as these best solutions are 
reported in Table 6. The generated gravity from the 
computed parameters is shown in Fig. 17.

As expected, the estimated q = 1.07 illustrates 
the feature of the aqueduct is a horizontal 
cylinder and the evaluated density contrast shows 
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5.3. Bitumen deposit gravity anomaly, Dehloran, Iran

The black circles in Fig. 19 show the residual gravity 
anomaly profile due to a bitumen deposit, which is 
located in west of Iran in the Zagros tectonic zone. One 
of the most considerable specificities of this region is its 
hydrocarbon potential. The gravity data are sampled at 
25 points, over 60 m profile with a 2.5 m interval. This 
field anomaly has previously been analysed by Abedi 
et al. (2010) and Tlas and Asfahani (2018). We have 
inverted this residual gravity anomaly using proposed 
method. Figs. 20a to 20e show the variations of the z, 

a good conformity with the mean density of the surrounding alluviums of the aqueduct. 
Moreover, the field investigations verify the accuracy of the calculated values for the parameters 
of the aqueduct structure.

Table 6 - Estimated parameters for the aqueduct gravity anomaly, Tehran, Iran.

x0 (m)qρ (g/cm3)R (m)z (m)Parameter

-0.061.07-2.8120.842.67Present method (MPSO)

Fig. 17 - Observed gravity anomaly and MPSO inverted gravity anomaly due to the aqueduct (Tehran, Iran).

Fig. 18 - Variations of the z, R, q, ρ param-
eters and Q values versus iteration number 
for the gravity anomaly over the aqueduct 
(Tehran, Iran).

Fig. 19 - Observed gravity anomaly and MPSO inverted gravity 
anomaly due to the bitumen deposit (Dehloran, Iran).

R, ρ, q parameters and Q values versus iteration number during inversion, respectively. The values 
of the inferred parameters for the buried bitumen deposit are z = 25.21 m, R = 13.20 m, ρ = -1.340 
g/m3, q = 0.96, and x0 = 27.85 m, which are tabulated in Table 7. The generated gravity of the MPSO 
inversion response is also shown in Fig. 19 with a black curve.
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Table 7 - Estimated parameters for the bitumen deposit gravity anomaly, Dehloran, Iran. Asterisks indicate the value 
of q that has been considered as a constant.

x0 (m)qρ (g/m3)R (m)z (m)
Parameter

MethodResearchers

-1*--23.73Normalized method
Abedi et al. (2010) -1*-14.123.31Least-squares minimisation

-1*-13.822.80Neural network modelling

27.621*--24.59quadratic curve regressionTlas and Asfahani (2018) 

27.850.96-1.34013.225.21Present method (MPSO)

The least amount of the Q whose value is 0.051 mGal (minimum error) was obtained at the end of 
the 68th iteration and this value remains unchanged to the last iteration (Fig. 20e).

Considering the density contrast between bitumen and the dominant surrounding formations 
(layers of limestone with intermediate marl-limestone) in this region, which is about -1.40 g/cm3, 
the density contrast -1.34 g/cm3 estimated by MPSO is wholly acceptable.

5.4. Chromite deposit gravity anomaly, Sabzevar, Iran

Fig. 21 represents the residual gravity anomaly map of an area under investigation in Sabzevar, 
Iran. The 22 black circles in Fig. 22 show the residual gravity field variations related to a subsurface 
chromite mass measured along profile AB, as shown in Fig. 21. The length of the profile AB is 42 m 
and gravity data sampling interval is 2 m. The average density of the chromite mass is about 4.6 g/
cm3, whereas the density of the surrounding formation is about 3 g/cm3. Consequently, the density 
contrast between the chromite ore body and surrounding formation is about 1.6 g/cm3.

Fig. 21 - The residual gravity anomalies overlaid by depth 
solutions of the 3D Euler method.

Fig. 20 - Variations of the z, R, q, ρ parameters and Q 
values versus iteration number for the gravity anom-
aly over the bitumen deposit (Dehloran, Iran).
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Eshaghzadeh et al. (2019) interpreted this anomaly in two separate papers using the forced 
neural network and Marquardt’s algorithm (Marquardt, 1963) methods (see Table 8). Here, we 
have employed the MPSO algorithm to invert the chromite deposit gravity anomaly. Figs. 23a to 
23e display the variations of the z, R, ρ, q parameters and Q values versus iteration number during 
MPSO inversion. The best values of the inferred parameters for the ore body structure, which was 
acquired at the end of the 62th iteration with an error value of 0.082 mGal, are z = 5.98 m, R = 14.62 
m, ρ = 1.786 g/m3, q = 0.598, and x0 = 0.12 m, as reported in Table 8. The black curve in Fig. 22 
shows the gravity response according to these estimated parameters. As seen, the resulted density 
contrast has an acceptable accordance with the density contrast of the region under investigation.

The Euler deconvolution method is a common technique in potential fields study, and is widely 
used for estimating the depth of the anomaly source (Reid et al., 1990; Silva and Barbosa, 2003). 
For comparison, we have employed the Euler method to calculate the depth of the chromite 
mineral mass by choosing a structure index of 1 and a window size of 5×5 points. Fig. 21 shows 
the solutions obtained from the Euler deconvolution as plotted on the residual gravity anomaly 

Table 8 - Estimated parameters for the chromite deposit gravity anomaly, Sabzevar, Iran. Asterisks indicate the value 
of q that has been considered as a constant.

x0 (m)qρ (g/m3)R (m)z (m)
Parameter

MethodResearchers

-0.5*-9.008.00Forced Neural NetworkEshaghzadeh et al. (2019)

-0.5*-11.707.50Marquardt’s algorithmEshaghzadeh et al. (2019)

0.120.5981.78614.625.98Present method (MPSO)

Fig. 24 - Observed gravity anomaly and MPSO inverted gravity 
anomaly due to the Leona deposit (south of Saint-Louis, Senegal).

Fig. 22 - Observed gravity anomaly and MPSO inverted gravity 
anomaly due to the chromite deposit (Sabzevar, Iran).

Fig. 23 - Variations of the z, R, q, ρ parameters 
and Q values versus iteration number for the 
gravity anomaly over the chromite deposit 
(Sabzevar, Iran).
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map. The Euler solutions located on the gravity anomaly present a depth between 5 to 10 m 
for the buried deposit. There is a satisfactory agreement between the computed depths by the 
MPSO algorithm and Euler deconvolution method.

5.5. Leona gravity anomaly, south of Saint-Louis, Senegal
We have digitalised the residual gravity data at 30 points with an equal interval of 

900 m, from over a measured gravity profile of 30 km in the west coast of Senegal, taken 
from Nettleton (1976). This field anomaly has 
previously been evaluated by Tlas et al. (2005), 
Asfahani and Tlas (2012), Mehanee (2014), 
Biswas (2015), and Singh and Biswas (2016). 
This extracted anomaly is illustrated in Fig. 24 
with the black circles. This region has been 
surveyed for its oil and gas potential. The MPSO 
was also utilised to analyse this anomaly. The 
optimal solutions for the parameters have 
been gained at the end of the 141th iteration, 
as the Q reaches its minimum value, that is 
0.036 mGal, and this value remains unchanged 
to the last iteration. The variations of the z, R, 
ρ, q parameters and Q values versus iteration 
number during inversion using MPSO are shown 
in Figs. 25a to 25e, respectively. The estimated 
values for the buried structure parameters are z 
= 3821 m, R = 1935 m, ρ = 2.343 g/m3, q = 0.464, 
and x0 = -114 m, as reported in Table 9, which 
can compare with other method’s outputs. The 
gravity response due to evaluated parameters is 
shown in Fig. 24.

Table 9 - Estimated parameters for the Leona deposit gravity Anomaly, south of Saint-Louis, Senegal. Asterisks indicate 
the value of q has been considered as a constant.

x0 (m)qρ (g/m3)R (m)z (m)
Parameter

MethodResearchers

2201.499--9170adaptive simulated 
annealingTlas et al. (2005)

-1.499--9130fair function minimizationAsfahani and Tlas 
(2012)

-1.5*--12200simultaneous regularized 
inversion

Mehanee (2014)
-0.5*--4590simultaneous regularized 

inversion

-4000.5*--4600very fast simulated 
annealingBiswas (2015)

-240±500.5*2.370±0.98033050±7994500±1780global particle swarm 
optimization

Singh and Biswas 
(2016)

-1140.4642.34319353821Present method (MPSO)

Fig. 25 - Variations of the z, R, q, ρ parameters 
and Q values versus iteration number for the 
gravity anomaly over the Leona deposit (south of 
Saint-Louis, Senegal).
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6. Conclusions

Presence of errors in geophysical inverse modelling and numerical computation is 
unavoidable, due to some factors such as the heterogeneity and discontinuity of the interior 
geological structures, the incoherence and incompatibility of the undersurface structures, and 
masses configuration with various geometric shapes. Therefore, the proposed method is no 
exception as well. However, determining the minimum and maximum values for the variables 
based on the geological and geophysical information, which is an important advantage in the 
MPSO approach over many of the nonlinear inversion methods, can notably decrease the 
computational error. However, many of the assumed initial values for the idealised source 
parameters are more accurate, the convergence rate of the MPSO is faster.

In this paper, we have introduced the MPSO algorithm as an automatic powerful tool for 
solving the multivariable problem. MPSO is a mathematical process that tries to fit theoretical 
gravity anomalies with observed ones by improving the buried structure parameters. For 
this method, a flexible code has been written to consider the estimated shape factor at each 
iteration as the forward modelling is performed.

The method was examined on synthetic gravity data with and without random noise for 
three synthetic idealised models. The obtained admissible results from the inversion verify the 
MPSO is an intelligent technique for the inverse modelling of the gravity field.

For comparison, we also applied the PSO algorithm to interpret the synthetic models. 
The results show that the MPSO algorithm is faster than the PSO algorithm and the iteration 
number for convergence of responses in MPSO is less than PSO. Moreover, the accuracy of 
obtained results from the MPSO is better than PSO. Because PSO sticks to the local minimum 
during inversion, the number of the repetition times of the PSO algorithm is more than the 
MPSO method.

MPSO was applied to analyse the five real residual gravity data profiles from Iran, USA, and 
Senegal. The estimated parameters for the subsurface causative mass using MPSO inversion was 
also compared with ones obtained from other methods proposed by several researchers. Based on 
the fact that the resulting shape factors can simulate the geometrical shape of the gravity anomaly 
sources of the case studies, i.e. the Humble Dome (q = 1.538), aqueduct (q = 1.070), bitumen  
(q = 0.960), chromite (q = 0.598), Leona (q = 0.464), the shape of the Humble Dome is, therefore, 
a sphere, the aqueduct structure and bitumen are horizontal cylinder forms, and the chromite 
deposit and Leona structure are vertical cylinder forms.
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