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ABSTRACT Near-surface geophysics techniques have proven their reliability in various application 
fields, such as geotechnical engineering, resource exploration, and archaeological 
research. Their success in these contexts is closely related to data interpretation methods, 
which must be able to resolve shallow structures/bodies that are small and/or located at 
short distances from each other, thus preventing their identification and discrimination 
due to the overlapping effects generated by different sources. Here, we propose a new 
data inversion tool, based on a probabilistic Bayesian approach, which is able to scan 
near-surface magnetised structures. The developed algorithm allows selecting the most-
likely probability density function, associated with the most-likely magnetic susceptibility 
contrast distribution in the explored model space, by refining the discretisation of the 
anomalous areas, i.e. those areas corresponding to the highest susceptibility contrast. 
We validated the algorithm on synthetic magnetic data generated by anthropogenic-
like bodies, and, then, inverted experimental magnetic measurements acquired at the 
archaeological site of Phaistos (Crete, Greece). In the latter case, the retrieved most-
likely model fits well with the remains found in the study area, and correctly identifies 
the proper magnetic susceptibility contrast, thickness, and depth of the Minoan wall top 
brought to light by the archaeological excavation.
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1. Introduction

In recent decades, numerous approaches have been proposed to interpret potential-
field geophysical data, such as gravimetric, magnetic, and self-potential measurements, 
with the aim of providing reliable estimates of the parameters characterising the sources 
of the observed anomalies. This requirement is all the more necessary, the higher the 
resolution required by the prospecting, as in the case of near-surface applied geophysics (e.g. 
environmental geophysics, hydro-geophysics, engineering geophysics, archaeogeophysics), 
which uses geophysical methods to investigate small-scale features in the shallow (tens of 
metres) subsurface. In particular, as concerns the interpretation of magnetic anomalies, 
beyond the forward modelling of buried sources (e.g. Di Maio et al., 2016, 2023), several 
numerical methods for geophysical data inversion have been proposed. Among these, we 
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recall: the least-squares minimisation approach, which has been applied in the case of tiny 
dykes (Abdelrahman et al., 2003b) or to a set of causative sources with different shapes 
(Abdelrahman et al., 2003a); the minimum variance criterion, used for inclined dyke-like 
structures (Essa and Elhussein, 2019) and for idealised-geometrical bodies (Essa et al., 2021); 
the correlation imaging method, which uses the correlation coefficient of local wavenumber 
of real magnetic data and transformative local wavenumber of synthetic magnetic data 
generated by an assumed structure to retrieve the location of the source responsible for the 
observed magnetic anomaly (Ma et al., 2017); and the correlation similarity between the 
analytic signals associated with the measured magnetic anomaly and the calculated response 
for some geometrically simple interpretive models (Mehanee et al., 2021). In addition, a 
broad class of numerical methods has been proposed, which are mainly based on global 
optimisation approaches (e.g. Asfahani and Tlas, 2007; Tlas and Asfahani, 2011; Göktürkler 
and Balkaya, 2012; Biswas and Acharya, 2016; Biswas, 2018; Essa and Elhussein, 2018; Di Maio 
et al., 2020; Essa and Elhussein, 2020; Ai et al., 2022; Essa and Diab, 2022) or on Bayesian 
strategies (e.g. Beardsmore et al., 2016; Güdük et al., 2021; Olierook et al., 2021; Sampietro 
et al., 2022), and are generally implemented for large-scale contexts integrating geological 
information as preliminary knowledge. Bayesian strategies successfully deal with under-
determined problems and with not-unique solutions, i.e. when different distributions of 
subsurface physical parameters can adequately explain the same observed geophysical data 
set (Sambridge, 1999; Sambridge and Mosegaard, 2002), by introducing a priori constraints 
on the model (Parker, 1977; Sambridge and Mosegaard, 2002).

In this framework, we propose a Bayesian probabilistic approach for the inversion of 
magnetic data, aimed at providing a two-dimensional subsurface map, in terms of magnetic 
susceptibility contrast, with the goal of identifying structures at the local scale (in the order of 
metres) with different magnetic properties to the surrounding context (Salone et al., 2022). It 
is an inversion method that, in a space of possible theoretical models, looks for the model that 
can best simulate the physical quantities measured at the surface and minimise the residuals 
between observed and predicted data. Indeed, the Bayesian approach differs from traditional 
inversion techniques (Olierook et al., 2021) in that it returns the solution, in terms of a posteriori 
probability distribution, of observing a specific model among those explored. This allows us 
to select a specific solution through the characterisation of the posterior distribution, for 
instance by its mode, i.e. through the model for which the distribution attains the maximum 
value (e.g. Aster et al., 2018). In addition, the Bayesian strategy has the advantage of naturally 
including any a priori information, if available, and easily integrating different types of data 
sets. This, therefore, enables the anomaly sources to be better characterised thanks to the 
merging of information gathered from different observables that are related to different 
physical quantities.

In this article, we focus on the Earth’s Magnetic Field (EMF) strength data acquired in 
gradiometer configurations in order to reduce the long-period components of the magnetic field 
(due to regional and crustal effects), in the space domain, and diurnal variations, in the time 
domain. In fact, this data acquisition configuration enhances the short-period components of 
the field, which are more likely to be due to the response of shallow and small magnetic sources, 
such as archaeological structures, the context in which the proposed inversion method has been 
validated.

Magnetic properties, in the shallowest part of the subsoil, are mainly due to the presence 
of magnetic materials, such as magnetite, or to the thermo-remaining magnetisation, which 
is acquired during the cooling phase in the presence of the EMF and is associated with 



451

An innovative probabilistic Bayesian tool to scan buried magnetised structures Bull. Geoph. Ocean., 64, 449-462

anthropic materials (such as ceramics and bricks, previously fired and/or baked). However, the 
application of the magnetic prospection method requires some favourable conditions, since 
significant variations in magnetic field values can be measured only when in the presence of 
a clear contrast between the magnetic properties of the archaeological ruins and those of the 
hosting material (e.g. Piro et al., 1998; Silliman et al., 2000; Fassbinder, 2017, and references 
therein).

In designing our Bayesian tool, we were guided by the elementary principles of electromagnetic 
physics. In the following, first we illustrate the theoretical framework on which the proposed 
inversion method is based and its workflow. We, then, present the results of its application to 
the inversion of synthetic magnetic data to test and validate the algorithm. Finally, for further 
validation, the developed tool is applied to magnetic data collected at the Minoan archaeological 
site of Phaistos (Greece). The results, in this case, are presented and discussed in the light of the 
remains unearthed from an archaeological excavation based on the magnetic survey (Di Maio et 
al., 2016).

2. The Bayesian algorithm

As mentioned above, the inversion algorithm presented in this paper has been developed 
in a Bayesian framework (Tarantola, 1987; Aster et al., 2018). First, we assume that a volume of 
magnetic material can be represented as a set of magnetic dipoles, each of which generates its 
own magnetic anomaly (Telford et al., 1991). If these dipoles are aligned with each other, due 
to the effect of induction in the presence of an external magnetic field, the whole body may 
exhibit residual magnetism. The volume under examination can, therefore, be considered as a 
continuous distribution of dipoles, resulting in a dipole moment vector per unit of volume of 
intensity, M, also called magnetisation intensity. Since the algorithm is based on the principle of 
superposition, the whole anomaly associated with the volume of magnetic material is, therefore, 
evaluated as the sum of the anomalies associated with the single dipoles present in the volume. 
Given a single dipole, whose centre is at coordinates (xm, zm), the magnetic field generated at an 
observation point at (x, y) is:

(1)

where m = 2pl is the dipole moment (p being the magnetic charge of the dipole and 2l the 
distance vector between the two dipole charges), I is the inclination of the magnetised dipole, 
and r is the distance between the dipole centre and the observation point (Telford et al., 
1991).

In the case of a volume of magnetic material, the dipole moment m(r), can be replaced with 
magnetisation M(r), which, for low intensity inducing fields such as the EMF, is given by:

(2)

where Fe(r) is the EMF, and χ the magnetic susceptibility. Therefore, Eq. 1 reads as:
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(3)

To solve the forward problem, the two-dimensional volume under study has been discretised 
into cells of size (∆x, ∆z) along the horizontal and vertical directions, respectively, each of which is 
characterised by a susceptibility contrast Δχ per unit of volume in the SI, which is the parameter 
to be explored in the inverse problem. The magnetic anomaly formula, at the observation point 
and corresponding to the single cell, can, then, be written as:

(4)

where ΔV is the volume of the elementary cell considering a unit dimension in the transverse 
direction, not explored here.

In the case of a magnetic survey performed in gradiometer configuration, the magnetic 
gradient is given by:

(5)

where z1 and z2 are the vertical coordinates of the two sensors. According to the principle of 
superposition, the magnetic gradient, at the observation point (xk, z1k, z2k), can finally be written 
as:

(6)

where the sum runs over all the cells in which the explored medium has been discretised.
Once the forward problem has been solved as described above, the misfit function can be 

defined as:

(7)

where dk
obs is the observed magnetic gradient measured at xk, with k = 1, ..., N, with N being the 

number of collected data. In the applications shown afterwards, prior information on susceptibility 
contrast spatial distribution (maximum ignorance a priori) is not included. In this case, according 
to the Bayes theorem, the posterior probability density function (Ppdf), associated with the Δχij 
susceptibility contrast distribution, can be defined as:

(8)
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For completeness of description, if any prior information about the model were available in 
terms of an a priori pdf [q(Δχ)], the posterior pdf would be given by:

(9)

However, as mentioned above, no a priori information has been used for the present study. 
In any case, a preliminary visual inspection of the observed data allows us to set the number 
of magnetic susceptibility anomalies, likely to be expected for the investigated volume, and, 
also, the range [Δχmin, Δχmax] of the susceptibility contrast to be explored. Then, for each given 
Δχ distribution, consistent with the above requirements, the algorithm generates a posterior 
Ppdf function. The Ppdf functions are, then, normalised and sorted in descending order, from 
the most likely to the least likely. This means that we obtain a sequence of ∆χ distributions in the 
subsoil, sorted from the most likely to the least likely, with the associated likelihood. Next, it is 
possible to select several Δχ maps from the most likely ones, and this enables identifying areas 
where magnetic susceptibility contrasts are most likely to be present. Subsequently, these areas 
are further discretised at a spatial step smaller than the previous one, and a new inversion is 
performed. At the end of this second inversion step, the final solution is identified as the most likely 
a posteriori Δχ distribution map (MAP model), i.e. with the model corresponding to the maximum 
of the Ppdf. Once the MAP model is obtained, we can estimate the uncertainties associated with 
the susceptibility contrast, retrieved for each contrast in each cell in which the explored model has 
been previously discretised. Finally, a map, representing the probability of observing the magnetic 
contrast susceptibility value, ∆χ, for each cell of the MAP model (independently of the magnetic 
contrast values in the surrounding cells), is produced. This probability is defined as follows:

(10)

This marginal probability provides a measure of how well the ∆χ value is constrained in the 
MAP model, for each cell (i, j). In other words, the higher this probability, the more constrained 
the susceptibility contrast retrieved in a given cell.

The uncertainty on the contrast value in each cell is, then, determined from the cumulative of 
the probability density function of the magnetic susceptibility contrast related to each cell. We 
consider uncertainty the half-width of the interval at the 68% confidence centred on the MAP 
model. In the following, we will indicate this uncertainty with σij.

A block diagram, describing the different steps performed by the inversion algorithm, is 
shown in Fig. 1. Summarising, the input consists of magnetic gradiometer data collected along 
a given profile. The size of the explored two-dimensional subsurface section, and the dimension 
of the discretisation cell, can be selected by the user, while the number of expected anomalies 
and range of the explored susceptibility contrast are inferred from a visual inspection of the data 
to be inverted. After a first inversion, which is already able to locate the anomalous zones, the 
susceptibility contrast maps are sorted by decreasing normalised probability. A further inversion, 
in which the most likely maps are thinner discretised, is, then, performed. The output is given by 
the probability distribution associated with all the possible susceptibility contrast distributions 
explored. The maximum a posteriori one is selected as the result, and the uncertainties associated 
with the ∆χ value, obtained in each cell, are provided.
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3. Analysis of synthetic magnetic data

To verify the performance of the implemented algorithm, several tests were performed on 
synthetic magnetic data sets. For brevity, the results of only two representative tests are discussed 
here. The first test considers a structure characterised by a single magnetic susceptibility contrast, 
with respect to the host material, while the second one involves two separate structures, having 
different magnetic susceptibility contrasts, with respect to the surrounding subsoil. Given the 
distributions of the susceptibility contrasts, we generated the synthetic data, namely the vertical 
magnetic gradient values, measured in proximity of two sensors placed at a height of 1.5 m and 
1 m above the surface level, along a 12 m long profile with a 0.5-m sampling step. A random 
noise, Gaussian distributed with zero mean and standard deviation equal to 5% of the maximum 
absolute value of the simulated magnetic gradient, was added to the synthetic data to imitate a 
realistic data set to be inverted.

The first model (Fig. 2b) consists of a 12 m long by 4 m deep section, hosting a 3 m × 1 m single 
structure, placed at an offset of 5 m from the origin of the section, with the top at a depth of 
1.5 m from the surface level. A positive susceptibility contrast, with respect to the host material 
of ∆χ = 0.08 (per unit of volume in the SI), was assumed. Synthetic data (Fig. 2a) were, then, 
generated as described above.

Fig. 1 - Block diagram of the inversion algorithm: a) the input requires magnetic gradiometer data, cell size, 
susceptibility contrast range to be explored; the processing operations are summarised in the central block; the 
output is the susceptibility contrast associated with the MAP model and relative uncertainties for each cell; b) sketch 
of the discretised medium under investigation, where r1 and r2 are the distances between the generic cell and the two 
sensors of the gradiometer.
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For the data inversion, we chose ∆x = 2 m and ∆z = 1 m as sampling steps along the horizontal 
x and vertical z directions, respectively, assuming that the magnetic susceptibility contrast varied 
in the range [0; 0.1], in steps of 0.02. In the second iteration, the cells are thickened with sampling 
steps along the x and z directions, equal to half of the previous step, and the susceptibility 
contrast sampling is also assumed as equal to half of the previous one. The most likely map 
(MAP model) found by the inversion algorithm is shown in Fig. 3a. It reveals an anomaly of about 
2.5 m × 1.5 m, characterised by susceptibility contrast values between 0.05 and 0.15 per unit 
volume in the SI. Size and position of the detected structure are very close to those chosen for 
the theoretical model, although the anomaly would seem to continue even deeper. However, 
examining the probability map associated with the retrieved values for each cell in the MAP 
model (Fig. 3b), the probabilities, related to the susceptibility contrast values for the deepest 
cells (depths larger than, or equal to, 3 m), are lower than those for cells located at the right 
depth. Moreover, the structure centre shows the highest probabilities, i.e. it is well constrained, 
while the probability decreases moving towards the structure edges, this being a transition zone 
between the anomaly source absence and presence. The susceptibility contrast reaches higher 
values compared to the theoretical ones at the centre, and lower values at the edges. However, 

Fig. 2 - 1st synthetic test, single anomaly source: a) synthetic data (black open circles) of vertical gradient of the 
magnetic field associated with the model shown in panel b, noisy synthetic data with the addition of random Gaussian 
noise (blue crosses), and simulated data (red line) corresponding to the MAP model retrieved by the inversion 
procedure; b) distribution of the magnetic susceptibility contrasts, ∆χ, in the subsoil per unit of volume in the SI, 
assumed for the test, according to the colour scale shown; the black dots are plotted as a reference for the centre of 
the cells.
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the mean value for the whole structure is very close to the one expected. The magnetic gradient, 
associated with the MAP model (red line in Fig. 2a), is in good agreement with the synthetic data, 
although the amplitude turns out to be somehow slightly greater. The misfit is of the order of 
2.2 × 10–4 nT . __

 m 

Fig. 3 - 1st synthetic test: a) MAP model retrieved from the inversion procedure: the colour scale represents the 
magnetic susceptibility contrast per unit of volume in the SI; b) probability map (as defined in Eq. 10) of observing, for 
each cell, the value provided by the MAP model.

The configuration assumed for the second test is shown in Fig. 4b. In this case, we consider 
a 20 m × 3 m subsurface section, hosting two 2.5 m × 1.5 m anomaly sources, placed at an 
offset of 5 m and 15 m, respectively, from the origin of the section, with their top at a depth 
of 1.5 m from the surface level. Positive magnetic susceptibility contrasts, with respect to the 
surrounding context equal to ∆χ = 0.008 and ∆χ = 0.0082 per unit volume in the SI, respectively, 
were chosen. The magnetic gradient values, relative to the synthetic model, are shown in Fig. 4a 
as black open circles, while the blue crosses indicate the noisy data obtained by adding, in this 
case also, Gaussian-distributed random noise to the synthetic data.

For the inversion, we selected ∆x = 2 m and ∆z = 1 m as sampling steps along the x and z 
directions, respectively, assuming that the magnetic susceptibility contrast varied in the interval 
[0; 0.01], in steps of 0.002. The most likely map found by the inversion algorithm is shown in 
Fig. 5a. It produced a misfit with data of about 1.3 × 10–2 nT  (red line in Fig. 4a) attesting to good  __

 m 

agreement between simulated and synthetic data.
From Fig. 5a, the presence of two anomalous bodies is evident: the first, on the left, is 

approximately 3 m × 2 m in size, has its top at a depth of 1 m below the surface level and is 
characterised by values of susceptibility contrast in the range [0.005; 0.01]; the second anomaly, 
on the right, is approximately 3 m wide, has its top at 1.5 m, and is characterised by susceptibility 
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Fig. 4 - 2nd synthetic test, two anomaly sources: a) synthetic data (black open circles) of vertical gradient of the magnetic 
field associated with the model shown in panel b; noisy synthetic data with the addition of random Gaussian noise 
(blue crosses), and simulated data (red line) corresponding to the MAP model retrieved by the inversion procedure; 
b) distribution of the magnetic susceptibility contrasts, ∆χ, in the subsoil per unit of volume in the SI, assumed for the 
test, according to the colour scale shown; the black dots are plotted as reference for the centre of the cells.

Fig. 5 - 2nd synthetic test: a) MAP model retrieved from the inversion procedure: the colour scale represents the 
magnetic susceptibility contrast per unit of volume in the SI; b) probability map (as defined in Eq. 10) of observing, for 
each cell, the value provided by the MAP model.
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contrast values in the range [0.005; 0.01]. Therefore, it would seem that the inversion process is 
able to retrieve the true magnetic susceptibility contrast (i.e. ∆χ = 0.008) between background 
and structures, but not a very accurate size and depth of the structures. However, by analysing the 
probability map (Fig. 5b) of the cells associated with the MAP model, it can be inferred that high 
probability values (~90 – 100%) are associated with the cells (surrounding the anomalous sources) 
that are characterised by the absence of any anomalous structure (∆χ = 0). Furthermore, the offset 
of the two anomalies is retrieved properly. For the anomaly on the left, the cell with 1-m top is 
associated with a low probability value, while the cells surrounding it at the same depth do not 
show any contrast and, conversely, are associated with higher probability values; finally, the central 
cell, at a 1.5-metre depth, shows a high susceptibility contrast with a higher probability value, 
leading us to interpret that the top of this structure is more likely at a 1.5-metre depth. We can 
interpret these observations as the result of a smearing effect on the edges and a higher probability 
for the centre of the structure. For the body on the right side, it has its top at a depth of 1.5 m, while 
the susceptibility contrast values associated with its cells are higher as observed for the anomaly 
on the left side of the model. For this second synthetic test, similarly to the first one, the retrieved 
average value of the susceptibility contrast of the two bodies is very close to the true value.

4. Analysis of field magnetic data

To further validate the developed Bayesian inversion tool, we applied it to field magnetic 
gradient data acquired by Di Maio et al. (2016), in the archaeological site of Phaistos (Crete, 
Greece) (Fig. 6a). In particular, the analysed data was extracted from the observed magnetic 
map along a profile (AA’ in Fig. 6b) crossing a magnetic anomaly, that perfectly correlates to a 
calcareous wall structure brought to light by excavations guided by the results of the geophysical 
multimethodological survey. For details on magnetic data acquisition and the processing 
technique see Di Maio et al. (2016).

Fig. 6 - a) Geographical map of the Phaistos site (Crete, Greece). The red square in the top right corner represents the 
Minoan palace of Phaistos, whereas the red box in the bottom left corner delimits the area in which the magnetic 
survey was performed. b) Anomaly map of the vertical derivative magnetic field. Thin black continuous lines roughly 
indicate the boundary of a possible buried wall, while the bold black line shows profile AA’ used in this study (after Di 
Maio et al., 2016, modified).
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Fig. 7 - Comparison between the experimental 
magnetic data (blue line) along profile AA’ in Fig. 
6b and the simulated data (red line) corresponding 
to the MAP model (Fig. 8a) retrieved from the 
inversion procedure.

Data, collected along the AA’ profile, is shown in Fig. 7 as a blue line. Visual inspection of 
the anomaly pattern suggests the presence of a main anomaly with a negative magnetic 
susceptibility contrast with respect to the background. We investigated a 20 m × 2 m section, 
choosing as spatial sampling steps ∆x = 2 m and ∆z = 1 m along the horizontal and vertical 
directions, respectively. Moreover, we explored the susceptibility contrast ∆χ in the range 

[-0.02, 0] using a step of 0.004 per unit volume in the SI. The susceptibility contrast distribution 
obtained from the inversion (Fig. 8a) shows the presence of a structure, about 2 m wide, located at 
the centre of the profile, with the top at a depth of about 1.5 m. It is characterised by a susceptibility 
contrast, ∆χ, of about -0.004 per unit of volume in the SI. On the right side of the profile, a 
second smaller structure is also visible at the same depth of about 1.5 m, but characterised by a 
lower susceptibility contrast (∆χ ≈ -0.002 per unit of volume in the SI). The comparison between 
the experimental magnetic data along the profile (blue line in Fig. 7) and the simulated data (red 
line in Fig. 7), corresponding to the MAP model retrieved from the inversion procedure, shows 
that the main minimum is properly found in terms of both location and amplitude. Consistently, 
the probability map associated with the individual cells (Fig. 8b) shows high probability values in 
correspondence of the main structure identified in the MAP model, whereas lower probabilities 
are found for the second structure. Elsewhere, the probability values are higher, except for one 
cell at about 3 m offset, which corresponds to a value of the magnetic gradient larger than 
– 1 nT/m, and for which the associated error is also larger, as shown in Figs. 8b and 8c. Although 
the exploration for negative susceptibility contrast structures could also lead to exploring the 
space portion below this local minimum of the gradient (since this minimum extends along the 
horizontal profile for less than 1 m and has a negligible value), no structure associated with it in 
the MAP model was retrieved.

Location, extent and depth of the identified structure perfectly match the remains brought to 
light by the archaeological excavation carried out following the geophysical survey (Di Maio et al., 
2016), which unearthed large sectors (approximately 2 m wide) of a double-curtain fortification 
wall made of limestone material, at a depth of about 1.5 m from the surface level. Significantly, 
the remains found are chronologically consistent with historical sources on the destruction of 
Phaistos in 150 B.C.
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Fig. 8 - Field test: a) MAP model 
retrieved from the inversion 
procedure, the colour scale 
represents the magnetic 
susceptibility contrast per unit of 
volume in the SI; b) probability 
map (as defined in Eq. 10) of 
observing, for each cell, the 
susceptibility contrast value 
provided by the MAP model; c) 
MAP model + uncertainties (Δχij

MAP 
+ σij), colour coded as in panel a; d) 
MAP model - uncertainties (Δχij

MAP 
– σij), colour coded as in panel a.

5. Conclusions

In this paper, a novel Bayesian probabilistic approach is proposed to identify buried structures 
characterised by different properties in terms of magnetic susceptibility contrast with respect 
to the host medium. The main assumption is the principle of superposition of elementary 
magnetic dipoles. It is, therefore, supposed that any magnetic anomaly observed at the surface, 
and associated with a volume of material with magnetic susceptibility different from that of the 
background, is due to the sum of the anomalies caused by the various single dipoles present in 
the volume under investigation. The possible applications of the developed inversion algorithm 
could be multiple. However, we highlight its usefulness for archaeological investigations, where 
fine characterisation of the targets (e.g. walls, tombs, etc.), in terms of location, size, and depth, 
is essential for properly planning any excavation project, achieving cost reduction and selecting 
the most appropriate methods for the excavation work.

The developed inversion tool provides, without requiring any prior geometric assumption, a 
solution, in terms of probability distribution, that allows the selection of the maximum a posteriori 
probability model, i.e. the model corresponding to the maximum of the posterior probability 
density function (Aster et al., 2018). The proposed procedure also renders a complementary 
probability map, which represents, for each explored cell, the probability of observing the 
susceptibility contrast provided by the MAP model. The effectiveness of the implemented code 
has been validated by tests on both synthetic and field magnetic data. In particular, the test 
on literature field data, acquired at the archaeological site of Phaistos (Di Maio et al., 2016), 
provided anomaly source parameters in good agreement with the characteristics of the remains 
unearthed in the study site.
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In the future, and in order to improve our tool, we aim to find strategies to reduce smearing 
effects. One possible approach could be to include further data sets from other geophysical 
methods (e.g. gravity and geoelectrical techniques), and unify them in an integrated multi-
parametric framework thanks to the probabilistic approach. In fact, the probabilistic treatment 
allows data of different nature to be integrated by simply defining a joint probability for the 
available data sets. The joint inversion would allow common features to be found and highlighted 
beyond the single physical properties that, analysed separately, might provide partial or weak 
information due to noise and/or to the under-determination and ill-posedness of the problem. 
In fact, a single model, able to simultaneously match all available independent data, provides 
a more probable solution than a model that can satisfy only a single data set (Beardsmore et 
al., 2016). The concept is that the information, jointly revealed by different techniques, adds 
up constructively, better defining the position of anomalous structures with respect to the 
surrounding medium, while any spurious artefact would disappear.

Finally, this method is designed for 2D models, and has been developed to work at local 
distances (in the order of metres). For this reason, it could work very well in small urban and 
archaeological contexts.
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