
Abstract. This paper presents a derivation of the governing equations for
microseisms in the far field in a visco-elastic half-space generated by ocean
waves. The equations are for small amplitudes and for the range of microseismic
frequencies associated with the first order bottom pressure effects of the
generating shallow water swell. We apply the equations to a fairly hard rock
geology and we calculate the frequency spectral amplitude components of
microseisms as a function of depth below the Earth’s surface in the far field.
Further, by analysing the Rayleigh denominator (Burridge, 1972), usually
derived from the governing equations, we verify that microseismic signals
propagating away from the generating source are damped. In this consideration,
we derived the limiting values of the damping coefficient to ensure effective
damping of microseismic oscillations as function of the material shear wave
speed.

1. Introduction

The phenomena of micro Earth tremors called microseisms had been observed since the early
days of seismology. The efficiency with which these waves are transmitted from the generating
source to the far field, their polarization, subsequent detection and recording are quite remarkable
and fairly well understood. They are essentially surface waves propagating in the direction
parallel to the Earth’s surface and the associated energy trapped near the surface. Consequently,
they could be detected at quite a distance from the generating source.

Analysis of the energy spectrum of the seismic records in the range of microseisms
frequencies clearly indicate two main peaks. It has been established conclusively that the two
peaks are largely associated with two distinct activities related to the ocean waves. The lower
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peak corresponding to the primary frequency microseisms is associated with the first order effects of
wave bottom pressure modulation as sea waves propagate through a sloping beach towards the
shoreline (Darbyshire, 1950; Hasselmann, 1963; Hinde and Hartley, 1965;  Okeke, 1972) and more
recently (Goodman et. al., 1989; Trevorrow et al., 1989; Asor and Okeke, 1998; Okeke and Asor,
1998).

On the other hand, the upper frequency peak is associated with the double microseisms. This is
so called for the microseisms frequencies in this band are double that of the generating sea waves.
As determined by Longuet-Higgins (1950), the wave activities involved in this regard are the second
order pressure effects. These are energized through the nonlinear interactions among progressive sea
waves moving in opposite directions. The phenomena are not affected by the depth of the water layer.
Consequently, they are effective generating mechanisms both in deep and shallow water areas.

In this study, we introduce a damping term in the governing equations. This will represent the
effect of the material inelasticity which we shall assume to be slight. Newlands (1954), in particular,
investigated a similar problem identified with Lamb (1904). In this case, the generating source is
localised and of the type usually modelled with delta function and the damping coefficient is assumed
to vary as the nth root of the single frequency, ω of the induced seismic mode. 

We shall however, adopt the Darbyshire and Okeke (1969) model in which the damping term in
the equation of motion is merely assumed to be proportional to the time rate of change of material
displacement components. In this model, the generating source is the high phase velocity pressure
components of the shallow water gravity waves propagating towards the shoreline from a wide range
of directions (Okeke and Asor, 2000). Thus, some of the Newlands’ deductions are not readily
applicable in our present study. Previous calculations based on this model were quite close to the
measurements of seismic events in the far field.

Further, there are a number of interesting and innovative publications on the related problems of
the evolution of the microseisms in the seafloor. Recent achievements in this area of geophysics owe
a lot to the work of Yamamoto et al. (1977, 1978) and recently, Trevorrow et al. (1988, 1989).
Information acquired therefrom had been effectively used in the study of such areas as the structural
depth profile below the seabed. It is intended in this analysis to extend the identical calculations to
the far field microseisms activities.

2. Boundary equations

In this model, x-axis is horizontal and directed normal to the shoreline; z-axis points
vertically downwards with z = 0 as the seabed, t is time and ϕ (x, z, t) and ψ (x, z, t) are the scalar
potentials associated with seismic events. ρω and ρs are the densities of water and the underlying
seabed respectively; λ and μ are elastic parameters. Thus, the compression and shear wave
velocities are respectively defined by
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The governing equations as proposed by Darbyshire and Okeke (1969) are as follows

The displacement components of the medium assumed to be elastic, are given by U in x-
direction and W in z-direction as follows

γ is the damping coefficient. Generally, it is a function of the wave period. k and c are
respectively, the low wave number and high phase velocity components in the wave number
spectrum of the seawaves (Hasselmann, 1963). P (k) is the seawave pressure amplitude.
However, in the ensuing calculations, P (k) will be expressed in terms of the wave periods.

The solutions of Eqs. (1) and (2) may be expressed in the form

where A and B are constants only with regards to space and time.

An effect of the damping term in Eqs. (1) and (2) is to make k and incidentally c complex number
with a non-zero imaginary part. Thus, k = k0 + iσ k, c = co + iσ c with σ k << ko, σ c << co.
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3. The far field material dispersion

On the Earth's surface and in the far field, the wave forms are free, hence, Eqs. (1) to (7) give

(8) and (9) are consistent if

Using Eq. (7),

whereby introducing the following notation in Eq. (11), with ν as the Poisson's ratio, we obtain

Thus, from Eq. (11),

Rearranging in powers of k1, f (k1) is now

If γ = 0 in Eq. (13), it reduces to the usual relation for the non-dispersive Rayleigh waves in
elastic solid. In this case, the equation will then be cubic in k1

2 which has been thoroughly analysed
(Bullen and Bolt, 1985) to obtain the propagational properties of the surface wawes for a range of
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values of ν. Eq. (13) is thus the case of the material dispersion associated with the inelastic term
introduced in the model; for k1=c/β depends on the material parameters μ, λ and γ.

4. Analysis of Eq. (13)

f (0)=-16 β 2 (1-α 1
2)<0, since α1<1 for surface waves.

f (1)>0 because

for each term in the bracket is negative since α1<1 and γ<β/4. The reason for the last inequality
follows from the realistic value of γ. Thus, there is a root of (13) between k1 = 0 and k1 = 1.

For f(-1), we have

There is, at least, another root of Eq. (13) between k1 = 0 and k1 = -1.
Further, Eq. (13) contains terms involving γ; even and odd powers of k1; thus, does not reduce to

a cubic in k1
2 that can be easily analysed.

Hence, to examine the nature of zeros of Eq. (13) in the unit circle |k1| < 1, sequence {fm(k1)},
m = 1, 2, ..., 5 of Sturm's function (Kurosh, 1980) are computed from Eq. (13). We now let
fo(k1) = f(k1) being Eq. (13). fn(k1) is the first derivative of fn-1(k1), n = 1, 2, …, 5. Let c(0) be the
number assigned to the changes of sign in these sequences when k1 = 0. Attach an identical meaning
to c(1) when k1 = 1. We find that the difference c(0) - c(1) in 0 < k1 < 1 depends on the values
assigned to γ. From symmetry, a similar conclusion applies to the range -1 < k1 < 0.

Consequently, if 0 ≤ γ ≤ α1
2 β/40, then c(0) - c(1) = 1 and there is only one real root in each of

the intervals -1<k1<0 and 0<k1<1. In this case, the effect of damping is negligible in the propagation
of elastic waves. With regards to the Sturm's sequence, all the leading coefficients are positive. If α1

2

β/40 < γ < β/4, then the leading coefficients for m = 2 and m = 3 in the Sturm’s sequence are negative
and c(0)- c(1) = 2. Thus, in |k1|<1, there are four complex conjugate roots for Eq. (13), one in each
of the four quadrants of the k1-plane. This analysis therefore seems to suggest that seismic waves in
an elastic solid are effectively damped if the attenuation coefficient γ in the solid exceeds the value
α1

2 β/40; and the complex roots for which Re(k1) > 0, Im(k1) > 0 corresponds, to the observed damped
vibrations.

We now apply this result to the microseisms signals recorded on geology made of fairly hard
rock. The phase speeded, of the signals usually ranges from 1.1 km/s to 1.8 km/s and using the value
co = 0.8β1 the corresponding value of γ is between 0.021 km/s and 0.04 km/s. This range of values of
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γ is between α1
2 β/40 and β/4, suggesting that the microseisms signals propagating from the source

to the recording station in the far field are damped to some extent.
The variation of this range of values of γ with depth is displayed in Table 1. The calculation in

this model covers the case of the horizontally stratified Earth for which the elastic parameters and
density are functions of the z-coordinates only. Further, the values of z in the computation are
confined to the depth above which the microseisms signals are likely to be detectable (Okeke and
Asor, 2000). From Table 1, the uniformity of this range with depth seems apparent.

Furthermore, calculations made by extrapolating from data in Table 1 suggests that the value of
γ ranges from 0.0135 km/s to more than three times this value at a depth of 100 km below the Earth's
surface. The implication of this state of affairs is illustrated in Fig. 1. Therefrom, it is apparent that
the microseismic amplitude components are damped to a near extinction state at about the depth of
100 km.

5. The far field wave form

In this section, we calculate the frequency spectral amplitude components of microseisms
signals as functions of depth variation below the Earth's surface. Identical calculations which have
given rise to a number of useful results and publications describing these could be found in
Trevorrow et al. (1991). However, the researchers seemed to have focused their interests on the
seabed microseisms.
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Fig. 1 - The variation of the vertical and horizontal ground movements with depth below the Earth’s surface.



Instead, our calculations will concern the microseisms as observed in the far field and in the
range of primary frequency. Extrapolating from the data for the seabed vertical profile (Trevorrow
et. al., 1988, 1991) of elastic shear modulus and related parameters, we have determined the
corresponding density, compressional and shear wave speeds in the far field. Our results, as
displayed in Table 1, are found to be in reasonable agreement with those observed locally by our
field geologists.

In this consideration, Eqs. (1) and (2) are to be expressed in terms of the displacement
component rather than scalar potentials. That is, we shall use the following representations

Introducing Eqs. (14) and (15) through (3) and (4) into (1) and (2), then rearranging, we
obtain the following set of differential equations

W x z t W z eik x ct( , , ) ( ) ( )= −

U x z t U z eik x ct( , , ) ( ) ( )= −
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Table 1. The range of the possible values of γ as a function of depth below the Earth's surface.

Z (m) ββ(z) km/s αα(z) km/s ρρ(z) g/cm
3 α2

1
β
—
40

ββ/10

5 1.60 2.73 2.05 0.0137 0.160
10 1.58 2.710 2.072 0.0134 0.158
20 1.71 2.952 2.091 0.0143 0.171
30 1.76 3.012 2.098 0.0152 0.176
40 1.94 3.340 2.10 0.0164 0.194
50 2.05 3.520 2.125 0.0218 0.205
60 1.97 3.401 2.132 0.0165 0.197
70 1.92 3.322 2.141 0.0160 0.192
80 1.90 3.124 2.143 0.0176 0.190
90 1.878 3.118 2.145 0.0168 0.188

(14)

Table 2. Calculated data of the microseismic activities in the far field. The last column is the amplitude distribution of
the exciting gravity (water) waves, ω= 2π/T, ρw = 1.015g/cm

3
.

Period (s) U(ω, z0) W (ω, z0) a(ω)

9 4.2μ 4.32μ 0.975m

10 4.5μ 4.5μ 0.992m

11 5.35μ 5.5μ 1.025m

12 6.15μ 6.4μ 1.130m

13 6.10μ 6.40μ 1.28m

(15)



Eqs. (16) and (17) combine to give the usual matrix form (Bullen and Bolt, 1985)

where

In Eq. (19), d is the depth of water layer measured from its undisturbed level. In shallow
water, kd→0 and sech(kd)→1; thus P(k) = ρwga(k) and the pressure is now hydrostatic being
unaffected by the depth of the water layer. In this case a(k) is the amplitude of the water wave
which is here referred to as the exciting source. In subsequent calculations, a(k) will be expressed
in terms of the observed wave periods, T, rather than wave number components, k.

In a perfectly damped elastic medium where the elastic parameters and density are assumed
to be constants, Eq. (18) can be easily integrated to obtain

where the column vector f0 represents the observed components of the microseisms amplitude in
the far field and z = 0.
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However, in the case of the horizontally layered Earth, Eq. (18) has a solution of the form

where P(z, z0) is related to the matrix A through

With P(z0, z0) = I, the relationship is now

In the discussions to follow, z0 = 0, is the Earth’s surface.

6. Discussion

The depth dependent far field wavefield is calculated from Eq. (22). With layer elastic
parameters extrapolated from Table 1, the matrix P(z, z0) is easily determined at any given depth.
The data input a(ω) in our calculations are displayed in Table 2; they are the amplitude
distribution of the shallow water generating swell as functions of wave periods. In order to give
a convergent and realistic result in the deeper part of the Earth’s layers, the input data employed
in the calculations are slightly less in magnitude than one would expect.

Specifically, the integral part of Eq. (22) is however less easily calculated as a function of
depth. Nevertheless, Simpson's and Gaussian algorithms employed at each layer of thickness 5m
give very smooth and identical results. Further, the damping coefficient γ is determined as a
linear function of wave period using the relationship 

where γ− is the distance decrement given by γ− =7×10-4 km-1, c=0.92 β.
The calculated variations of the components of the ground displacements in response to

microseismic events are displayed in Fig. 1. Therefrom, the suggested apparent peak period of
12 s applies at all depths. Again, the usual behaviour of the guided mood of vibrations seems to
have been well depicted by Fig. 1. However, the amplitude decay from the Earth's surface is not
exponential as would have been expected by using the model of homogeneous elastic Earth's
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medium. Thus, this development suggests the layer effects on the amplitude of the vibrations.
Finally, the surface seismic amplitude components obtained from this model are quite close

to the locally observed microseisms amplitude spectrum, though on the lesser side (Table 2).
Thus, quantitatively, the computed amplitude components are almost half of the observed data
(Okeke, 1972). The discrepancy is, as expected, owing to some other seismological constraints
that are not included in this study.
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