
Abstract. In applied geophysics generalized bodies are often used to model the
distribution of underground masses, such as spheres, vertical cylinders, vertical
prisms, etc. Generally, discrimination between disturbing bodies producing similar
kinds of anomalies is extremely difficult, or even impossible, with classical algo-
rithms. In this paper we present a technique for gravity interpretation, based on the
application of feed-forward, multi-layer artificial neural networks (ANNs), trained
with back-propagation algorithms. This technique is used, firstly, to discriminate
bodies producing a similar kind of anomaly. When the general shape of the body has
been found (qualitative interpretation), the ANN method is applied to find the shape
parameters like depth, vertical extension and radius. It is shown that after having
been properly trained, an ANN is able to recognize a disturbing body with a degree
of confidence higher than 99%. It is also shown that inversions carried out with this
method produce quantitative results with accuracy ranging from 2% to 5%. The
applications presented in this paper are based on synthetic data. These are the first
steps towards a generalized technique of interpretation.

1. Introduction

The aim of gravity interpretation is to discover how masses producing a given gravity
anomaly are distributed. Although great efforts have been devoted to this topic, it has to be
remarked that neither theoretical nor practical solutions to solve the problem completely exist. In
applied geophysics, simple geometrical shapes are considered accurate enough for representing
bodies. The most frequently used elementary shapes are spheres, cylinders, prisms and steps
representing highly compact ore deposits, diamond-bearing pipes, dykes and vertical faults. At
every stage of interpretation, the interpreter has to make choices between various possibilities that
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are often biased. It is, for example, much easier to “see” structures on an anomaly map clearly,
which support the preconceptions of a geologist or geophysicist, rather than to identify structures
in an unknown area. 

The goal of this study is to show how it is possible to avoid the effects of individual judgment
by applying artificial neural networks (ANNs), to first discriminate disturbing bodies giving simi-
lar anomalies, and then use the same technique for inversion. 

ANNs are biologically inspired; they are composed of elements behaving in a manner ana-
logous to the most elementary functions of the biological neuron (McCulloch and Pitts, 1943).
These elements are organized in a way that may be related to the anatomy of the brain. ANNs
exhibit a surprising number of characteristics of the human brain. For example, they learn
from experience, generalize from previous examples to new ones, and extract essential char-
acteristics from inputs containing irrelevant data. ANNs can modify their behaviour in
response to their environment. This factor, more than any other, is responsible for the inter-
est they have received. If ANNs receive a set of inputs (perhaps with desired outputs), they self-
adjust to produce consistent responses. Once trained, a network's response can be, to a certain
degree, insensitive to slight variations in its input. Most ANNs contain only the simplest char-
acteristics of the human brain. The artificial neuron was designed to mimic the first-order
characteristics of the biological neuron. In essence, a set of inputs is applied, each represent-
ing the output of another neuron. Each input is multiplied by a corresponding weight, analo-
gous to a synaptic strength, and all of the weighted inputs are then summed to determine the
activation level of the neuron. The net signal is usually further processed by an activation
function to produce the neuron's output signal (Grossberg, 1973). This may be a simple linear
function, it may also be a threshold function (called a squashing function) that simulates more
accurately the non-linear transfer characteristic of the biological neuron and permits more
general network functions. Although a single neuron can perform certain simple-pattern
detection functions, the power of neural computation comes from connecting neurons to
networks. The simplest network is a layer. Each element of the set of inputs is connected to
an artificial neuron through a separate weight. What each neuron outputs is simply a weigh-
ted sum of the inputs to the network. Multi-layer networks have been proven to have capabil-
ities beyond those of a single layer, and in recent years, algorithms have been developed to
train them. Multi-layer networks may be formed by simple cascading groups of single layers:
the output of one layer provides the input for the subsequent layer. The first layer receives the
input signal whereas the last one gives the output signal. The layers between the input and the
output ones are called hidden layers. These networks have no feedback connections, that is,
connections through weights extending from the outputs of a layer to the inputs of the same
layer or previous layers. This special class called non-recurrent or feed-forward networks, is
of considerable interest, and is widely applied.

To be useful an artificial network has to be trained in such a way that the application of a
set of inputs produces the desired (or at least consistent) set of outputs. Training is accom-
plished by sequentially applying input vectors, and network weights are adjusted according to a
predetermined procedure. During training, the network weights gradually converge to such
values that each input vector produces the desired output vector. Usually, a network is trained



over a number of such training pairs. When an input vector is applied, the output of the
network is calculated and compared to the corresponding target vector, and the difference
(error) is fed back through the network, and weights are changed according to an algorithm
that tends to minimize the error. The vectors of the training set are applied sequentially, errors
are calculated, and weights are changed according to an algorithm that tends to minimize the
error.

Large and complex networks generally offer great computational capabilities; they are built
in configurations inspired by the layered structure of certain portions of the brain. 

To be useful, an artificial network first must be trained with a set of data covering the com-
plete range of values possible for a given case. More detailed explanations about the structure,
training theory and algorithms of ANN can be found in many textbooks. See for example:
Wasserma (1989), Freeman and Skapura (1991), Hertz et al. (1991), Rumelhart and Lelland
(1989), Hecht-Nielsen (1990), Simpson(1990). In this article only feed-forward ANN and back-
propagation training-algorithms are used.

2. Concept of the gravity interpretation with ANN

For the interpretation in two dimensions a residual anomaly, along a principal profile, must
be available. A principal profile is defined as a profile passing through the maximum of the anomaly
and crossing the anomaly lines perpendicularly, see Fig. 1. From the shape of the anomaly
and/or geological information the interpreter has to choose the category of the disturbing bodies.
It is clear that there is usually no ambiguity between the anomaly produced by a sphere and the
one produced by a dyke. However, as in all geophysical data-interpretations one needs to have
some idea about the target. With the geological information available, the minimal and maximal
possible values of the disturbing body’s shape can be determined. In other words, it makes no
sense to train an ANN for a depth of hundreds of meters when the target produces an anomaly
of a few microgals, with a wavelength of some meters. If only poor information on the target exi-
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Fig. 1 - Definition of principal and not principal profiles for different kinds of gravity anomalies.



sts, the training space chosen can be very large, but this will increase training time and will re-
quire more effort to find a satisfying result. In order to train an ANN for body-recognition, it is
necessary to calculate anomalies for bodies belonging to the same category (e.g. sphere and ver-
tical cylinder, dyke and horizontal cylinder; anticline and syncline) and with parameters falling
within the boundaries given by geological information. No assumptions on the density contrast
are needed for body recognition.

After the ANN has chosen among the competing bodies, quantitative interpretation can
begin. 

3. Application for qualitative interpretation

3.1. Introduction

Bodies producing circular and almost concentric contours on the anomaly map are sup-
posed to be spheres, circular discs or vertical cylinders. The presence of thin dykes, veins and
mineralized shear zones are shown by elliptic contours, the major axis defining the strike
direction. If the contour map exhibits symmetry around the maximum anomaly line, the
models that could be assumed are vertical dykes, anticlines and synclines, depending on the
local geology. Gravity anomalies caused by structures of simple geometry are characterized
by various parameters that completely define their density contrast and their orientation
below the ground surface. The magnitude of the anomaly is mostly a measure of the density
contrast, whereas its shape includes all other parameters of the model, often known as shape
parameters. However, it is not a simple task to choose between two or more bodies producing
similar anomalies. Apart from the fact that the classical procedures used for this task are
tedious, they are also subject to mistakes due to the importance of the subjective judgement.
Because of ANN’s (Artificial Neural Network) capability to classify things into groups, this
leads to the idea that an ANN can be trained with a set of computed anomalies to recognize
different bodies, and then used to recognize the model for other anomalies. A second well-
known application of ANN is to learn from examples and then conclude for similarity. This
means that an ANN can be trained with a set of synthetic anomalies and their corresponding
target parameters, and can then find the corresponding model parameters from an experi-
mental anomaly (not included in this training set). Looking at a gravity map it is easy to
distinguish between Central Symmetric and Axial Symmetric anomalies (Fig. 2). The prob-
lem arises, when one tries to find the shape of the disturbing body producing one of these
anomalies.

A circular anomaly can be produced either by a sphere or by a vertical cylinder, whereas an
elliptical anomaly (2D) can be caused either by a horizontal cylinder or by a vertical dyke (Fig.
2). Only a very experienced interpreter, if at all, is able to recognize the shape of a disturbing
body from the shape of an anomaly. If an ANN is trained with a set of anomalies produced by
spheres and by vertical cylinders, it is able to decide which kind of body is producing the
anomaly. 
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3.2. Criteria for anomaly recognition

Different features that define the shape of a disturbing body can be derived from an anomaly
along a principle profile (tangent, location of inflection point, maximal value,…). The shape of
the anomaly depends only on the shape of the body and not on its dimensions. Therefore, the
absolute values of the anomaly are not necessary.

In order to recognize a sphere or a vertical cylinder, only two features are necessary, whereas
for a horizontal cylinder or a vertical dyke three features are needed. The different features used
to characterize the anomalies are defined in Fig. 3.

It is worth noting that there is no general rule for finding the number of necessary features.
An ANN trained with four features may work as well as, or even better, than one trained with
three, but the training-time will certainly increase.

3.3. Examples

For training-sets and application-sets, spheres, horizontal cylinders and vertical dykes were
computed by means of their analytic formulas. The shape parameters of these bodies are sum-
marized in Fig. 4.

Each training-set contains input vectors and the corresponding target vectors. The previously
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Fig. 2 - Schematic description of the ambiguity in gravity anomaly interpretation.



defined features form the input vectors. The target vectors contain the expected results. The tar-
get vector (1, 0) for example, represents spheres, and the vector (0, 1) represents vertical cylin-
ders. Fig. 5 shows this relationship for spheres and vertical cylinders as well as for horizontal
cylinders, vertical dykes, anticlines and synclines, respectively. Each application-set, contrary to
the training-set, contains only the input vectors. 
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Fig. 3 - Definition of the features describing the shape of the anomalies.

where: F1 to F5 are the features for the description of the anomalies
gy is the value of g at y% of gmax

xgy is the value of x at gy.
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Fig. 4 - Definition of the bodies and their parameters representing: (a)  spheres and vertical cylinders; Z = depth of the
top of the structure, R = radius, h = vertical extension, (b) horizontal prisms and horizontal cylinders (principle pro-
file); and l = width of the prism, (c) anticlines and synclines and their appearance on the anomaly map; t = thickness.
Note that the body gets larger when R increases and not when t is changed.
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3.4. Training

SPHERES AN VERTICAL CYLINDERS. - An ANN with 2 neurons in its hidden layer (2,2,2) was trained
for the spheres and the vertical cylinders. The tops of the cylinders were set between 250 m
and 750 m below the surface and their radii between 100 m and 250 m, with 250 m and 150 m
increments for depths and radii, respectively. Their vertical extension is 1000 m and the density
contrast was set to one. Gravity anomalies for spheres were calculated for the same depth of the
top and the same radii as the cylinders, the density contrast was also set to one. 

HORIZONTAL CYLINDER AND VERTICAL PRISM. - Horizontal cylinders and vertical prisms are often
used in micro-gravimetry, because they represent good models for tunnels. The tops of the
structures were set between 2 m and 4 m, the radius of the cylinder between 1 m and 2  m,
the width of the prism between 2 m and 4 m and its vertical extension between 1 m and 7 m.
All the increments were 0.25 m.

Because the difference between the shape of the anomalies is much smaller than for a sphere and
vertical cylinder the training vectors have to contain three features instead of two (F3, F4 and F5). 

ANTICLINES AND SYNCLINES. - The geometry of bodies representing synclines or anticlines is
not so obvious as the above examples; there are different ways to approximate these shapes.
The simple bodies used to represent an anticline and a syncline are defined in Fig. 4c. An
(3,3,2) ANN was trained with a set containing the features F3, F4 and F5 calculated for 20
anticlines and 20 synclines with the same dimensions. These dimensions were: Zmin=200 m,
Zmax=800 m, Rmin=1000 m, Rmax=1500 m, tmin=200 m, tmax=800 m. The increments
were 3 m for Z and t, and 1 m for R.
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Table 1 - Values of the application-set and the corresponding results. 

body z [m] h [m] R [m] ρρ [kg/m3] a1 (sphere) a2 (cylinder)

S 350 ---- 150 1000 1.0000 0.0000
C 350 1350 150 1000 0.0002 1.0000
S 425 ---- 225 1000 1.0000 0.0000
C 425 1450 225 1000 0.0004 0.9999
S 650 ---- 190 1000 1.0000 0.0000
C 650 1510 190 1000 0.0003 0.9999
S 685 ---- 240 1000 1.0000 0.0000
C 685 1625 240 1000 0.0002 1.0000
S 700 ---- 110 1000 1.0000 0.0000
C 700 1725 110 1000 0.0002 1.0000
S 725 ---- 210 1000 1.0000 0.0000
C 725 1680 210 1000 0.0002 1.0000

C = vertical cylinder; S = sphere; z = depth; h = vertical extension of cylinder; R = radius; all these units are in [m];
ρ= density contrast [kg/m3]; a1 = answer of the ANN corresponding to the Sphere; a2 = answer of the ANN corre-
sponding to the Cylinder.



3.5. Results

SPHERE AND VERTICAL CYLINDER. - A test-set, with the parameters listed in Table 1 was pas-
sed through the trained ANN. The output (a1, a2) is presented on the right of the same table.

When the output (from the corresponding neuron) is near 1 it is very probable that the ANN
recognized the right body. However, it is always necessary to look at both outputs. When the sum
of a1 and a2 is not close to 1, the result cannot be trusted at all. With this thought in mind, the
above results are with a very high probability correct. 

In order to demonstrate the ability of the ANN to recognize the true body, independently of
the density, a second application-set for the same parameters as in Table 4 but with a density con-
trast of 500 [kg/m3] instead of 1000 [kg/m3] was calculated and then passed through the same
network. As expected the result is exactly the same (see Table 2).

HORIZONTAL CYLINDER AND VERTICAL PRISM. - An application-set with twenty bodies was cal-
culated and passed through the ANN. The dimensions and the network outputs are listed in
Table 3. The network recognized all bodies correctly, however, the third body produced an
output of (0.3689, 0.6373) and the sum of the two output-neurons is (1.0062). This shows
that the body is recognized as a vertical prism, but only with a high degree of uncertainty.

This result is reasonable because the vertical extension of the prism is exactly the same
as its width and is very close to a horizontal cylinder with the same dimensions. Therefore,
the resemblance to a horizontal cylinder is evident. 

ANTICLINE AND SYNCLINE. - To demonstrate the behaviour of an ANN trained with anticlines
and synclines, a test-set containing six input vectors for both structures was computed. The
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Table 2 - Values of the second test-set and the corresponding results. 

body z [m] h [m] R [m] ρρ [kg/m3] a1 (sphere) a2 (cylinder)

S 350 ---- 150 500 1.0000 0.0000
C 350 1350 150 500 0.0002 1.0000
S 425 ---- 225 500 1.0000 0.0000
C 425 1450 225 500 0.0004 0.9999
S 650 ---- 190 500 1.0000 0.0000
C 650 1510 190 500 0.0003 0.9999
S 685 ---- 240 500 1.0000 0.0000
C 685 1625 240 500 0.0002 1.0000
S 700 ---- 110 500 1.0000 0.0000
C 700 1725 110 500 0.0002 1.0000
S 725 ---- 210 500 1.0000 0.0000
C 725 1680 210 500 0.0002 1.0000

C = vertical cylinder; S = sphere; z = depth; h = vertical extension of cylinder; R = radius; all these units are in [m];
ρ= density contrast [kg/m3]; a1 = answer of the ANN corresponding to the Sphere; a2 = answer of the ANN corre-
sponding to Cylinder.



dimensions and the corresponding network outputs are listed in Table 4.

4. Application for quantitative interpretation

4.1. Introduction

In the inversion methods a general hypothesis on the model is made and initial values
are attributed to the model-parameters. The method then optimizes these parameters directly
in the sense that they are the best values obtainable for a given anomaly. 

Doing inversion with ANNs, the above order is changed such that a network is trained
for a wide range of model-parameters. Once trained, an ANN is able to find the best pa-
rameters for a given model without any optimization. 

4.2. Criteria for inversion

Some of the features used to describe an anomaly were already explained in the previous

Boll. Geof. Teor. Appl., 41, 1-20 GRÊT et al.
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Table 3 - Values of the parameters of the application-set and the corresponding results. 

Nr. Body z [m] h [m] 2R [m] or l [m] a1 (cylinder) a2 ( prism)

1 P 2.10 5.10 2.00 0.0000 1.0000
2 C 2.10 ---- 2.00 0.9999 0.0001
3 P 3.10 5.10 2.00 0.3689 0.6373
4 C 3.10 ---- 2.00 0.9999 0.0001
5 P 3.00 6.00 2.50 0.0001 0.9999
6 C 3.00 ---- 2.50 0.9965 0.0033
7 P 3.00 8.00 2.50 0.0000 1.0000
8 C 3.00 ---- 2.50 0.9953 0.0045
9 P 2.50 7.00 2.50 0.0000 1.0000
10 C 2.50 ---- 2.50 0.9999 0.0001
11 P 3.50 7.00 2.50 0.0000 1.0000
12 C 3.50 ---- 2.50 0.9998 0.0002
13 P 3.00 6.00 3.50 0.0000 1.0000
14 C 3.00 ---- 3.50 0.9965 0.0033
15 P 3.00 8.00 3.50 0.0000 1.0000
16 C 3.00 ---- 3.50 0.9955 0.0044
17 P 2.50 7.00 3.50 0.0000 1.0000
18 C 2.50 ---- 3.50 0.9999 0.0001
19 P 3.50 7.00 3.50 0.0000 1.0000
20 C 3.50 ---- 3.50 0.9998 0.0002

C = horizontal cylinder; P = vertical prim; z = depth; h = vertical extension of prism; R = radius of cylinder; l = width

of prism; all the units are in [m]; a1 = answer of the ANN corresponding to the Sphere; a2 = answer of the ANN cor-

responding to the Cylinder.



chapter. Inversion is a more sophisticated problem than the simple recognition of the shape
of a body and demands a more precise description of the anomalies. Fig. 6 defines the addi-
tional features used for the inversion process. 

Each body’s anomaly is sensitive to different features and some bodies need more fea-
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Fig. 5 - Schematic description of the input-output relationship of an ANN used to recognize the geometry of a disturb-
ing body. a) For sphere and vertical cylinder and b) for horizontal cylinder, vertical dyke, anticline and syncline.



tures than others. A list of the different bodies with their corresponding features is shown in
Table 5.

4.3. Examples

Like for body-recognition, each training-set contains input vectors and corresponding target vec-
tors. The previously defined features form the input vectors and the target vectors contain the expec-
ted results (model-parameters). Note that for each category of body, a different ANN is trained with
a number of input-output-vector pairs that define the capacity of the ANN. Probably the most diffi-
cult task in quantitative gravity interpretation is to find the density for a disturbing body. No inver-
sion technique is able to find all shape parameters and the density, without ambiguity. Once the shape
of a disturbing body is known, the density can easily be calculated with the analytic formula or with
numerical integration. However, when the shape parameters are wrong, the density will be wrong
too. We attempted here to find as precise as possible shape parameters without including the effect
of density. An assumption on the density is made and the ANN is trained for that density, the effect
of a variation on density is tested after training. When a large change in density results in a small
change in the shape of the body, the network can be used to find precise enough shape parameters,
so that the right density can be calculated afterwards. 

4.4. Training

The same kind of ANN used for model recognition is trained to solve the inversion problem.
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Table 4 - Values of the test-set and the corresponding results. 

Nr. body z [m] h [m] R [m] a1 (anticline) a2 (syncline)

1 A 300 700 1250 1.0000 0.0000
2 S 300 700 1250 0.0000 1.0000
3 A 300 900 1250 1.0000 0.0000
4 S 300 900 1250 0.0000 1.0000
5 A 500 900 1250 1.0000 0.0000
6 S 500 900 1250 0.0000 1.0000
7 A 210 420 1010 1.0000 0.0000
8 S 210 420 1010 0.0000 1.0000
9 A 410 620 1010 1.0000 0.0000
10 S 410 620 1010 0.0000 1.0000
11 A 610 820 1010 1.0000 0.0000
12 S 610 820 1010 0.0000 1.0000

A = anticline; S = syncline; z = depth; h = vertical extension; R = radius; all units are in (m); a1 = network output for
the first neuron in the output layer, corresponding to the answer for A; a1 = answer of the ANN corresponding to the
Sphere; a2 = answer of the ANN corresponding to the Cylinder.



Because the problem is much more complicated than the simple discrimination, the ANN is very
sensitive to local minimum in the "multi-dimensional error surface". The larger a network is, the
more variations on this surface exist. In consequence a very powerful network could find the tar-
get vectors in the training set very precisely and could yield poor results for parameters not cor-
responding to the training set. The number of neurons in the hidden layer is crucial for the prob-
lem but no rules exist for the determination of the optimal dimension of an ANN. Because the
training process often falls in local minimum, a more powerful back-propagation algorithm than
the simple steepest descent was used (Levenberg-Marquardt back-propagation approximation;
Hagan and Menhaj, 1994). 
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Fig. 6 - Definition of the additional features F6, F7, F8 and F9 describing the shape of the anomalies.

where: F6 to F9 are the additional features for the description of the anomalies
gy is the value of g at y% of the maximal value
xgy is the value of x at gy.
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SPHERES, HORIZONTAL CYLINDERS AND VERTICAL PRISMS. - An (3.2.2) ANN was trained for these
structures with constant density contrasts of 300 kg/m3 for the spheres and the vertical prisms, and
of 2500 kg/m3 for the horizontal cylinders. This latter density contrast was chosen because the
model mostly represents tunnels or other kinds of cavities. The neurons of the input layers corre-
spond to density, radius and depth of the center of mass for the spheres and the horizontal cylin-
ders, and to density, top and thickness for the vertical dykes. The neurons of the output layers cor-
respond to the same parameters except for the density.

The training parameters of these bodies are summarized in Table 6.

VERTICAL CYLINDERS, SYNCLINES AND ANTCLINES. - An (4.3.3) ANN was trained for these bodies
with a density contrast of 300 kg/m3. The neurons of the input layers correspond to density,
radius, and depth of the top of the structure and vertical extension whereas the neurons of the
output layers correspond to the same parameters with the exception of the density which is not
resolved.

The training parameters of these bodies are summarized in Table 6. 

4.5. Results

In order to test the capacity of the ANN objectively, all the geometrical parameters for each
model were randomly generated but strictly maintained inside the training space. On the oppo-
site side, the density contrasts were set between 290 and 300 kg/m3 for the bodies trained with
300 kg/m3 and between 2400 and 2600 kg/m3 for the horizontal cylinder. These changes were
made in order to find out if the technique permits some inaccuracies of the density contrasts
without degrading the accuracy of the results. After passing the application-set through the
network, the difference between the resulting output and the target parameters (network-error)
was calculated for each body. 

SPHERES. - An application-set containing 317 pairs of input- and target-vectors was used for the
test. The standard deviations of the differences between the real and the computed depth and
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Table 5 - List of the bodies with their corresponding features.

body F1 F2 F3 F4 F5 F6 F7 F8 F9

sphere P P P
vertical prism P P P

horizontal P P P
cylinder

vertical cylinder P P P P
anticline P P P P
syncline P P P P



radius are 5.5 m and 3.7 m respectively. Considering the large values chosen for these parame-

ters the standard deviation values are surprisingly small. For the smallest sphere (198 m) this cor-

responds to an error of 2.8% and of 1.1% for the largest sphere (517 m). For the shallowest body

(115 m) it corresponds to an error of 3.2% and for the deepest (245 m) to an error of 1.5%.

HORIZONTAL CYLINDERS. - For this test an application-set with 225 pairs of input- and target-vec-

tors was used. The standard deviations of the differences between the real and the computed

depth and radius are 0.02 m and 0.015 m respectively. For the smallest cylinder (1.01 m) this

results in an error of 1.49% and for the largest cylinder (3.99 m) in an error of 0.38%. For the

shallowest body (2.26 m) it corresponds to an error of 0.89% and for the deepest (8.53 m) to an

error of 0.23%.

VERTICAL PRISMS. - The standard deviations of the differences between the real and the com-
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Fig. 7 - Values of the depth of the bottom of the vertical cylinders obtained by the inversion with an (3.2.2) ANN. The

absolute error is shown as a function of the true depth. 
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puted data for an application–set containing 209 pairs of vectors, is 0.2 m for the depth and 0.3 m
for the width. For the shallowest body (11.13 m) it corresponds to an error of 1.8% and for the
deepest (49.1 m) to an error of 0.41%. For the narrowest dyke (12.77 m) this corresponds to an
error of 2.35% and for the widest (57.38 m) to an error of 0.52%. 

VERTICAL CYLINDER. - A test-set with 637 pairs of input- and target-vectors was used in this case.
The standard deviations of the differences between the real and the computed depth, vertical
extension and radius are 8.8 m, 61.2 m respectively 14.8 m. For the shallowest body (200 m) it
results in an error of 4.4% and for the deepest (600 m) in an error of 1.47%. For the cylinder with
the smallest vertical extension (600 m) this corresponds to an error of 4.2% and for the largest
(4600 m) to an error of 1.33%. For the cylinder with the smallest radius (200 m) it results in an
error of 4.4% and for the largest (100 m) in one of 1.48%.

ANTICLINE. - An application-set with 409 pairs of input- and target-vectors was used. The stan-
dard deviations of the differences between the real and the computed top, bottom and radius are
3.3 m, 5.6 m and 8.8 m respectively. For the shallowest body (290.2 m) it corresponds to an error
of 1.14% and for the deepest (509.7 m) to an error of 0.65%. For the anticline with the smallest
vertical extension (bottom at 545.2 m) this results in an error of 1.03% and for the largest (900
m) in an error of 0.62%. For the anticline with the smallest radius (290.5 m) it results in an error
of 3.03% and for the largest (727.7 m) in one of 1.21%.

SYNCLINES. - Exactly the same parameters as for the anticline were used for testing the syncline.
The standard deviations of the differences between the real and the computed top, bottom and
radius are 3.6 m, 5.3 m and 10.2 m respectively. For the shallowest body (290.2 m) it corresponds
to an error of 1.24% and for the deepest (509.7 m) to an error of 0.71%. For the anticline with
the smallest vertical extension (bottom at 545.2 m) this results in an error of 0.97% and for the
largest (900 m) in an error of 0.59%. For the anticline with the smallest radius (290.5 m) it results
in an error of 3.51% and for the largest (727.7 m) in one of 1.4%.

In order to better illustrate these results, the values obtained for the depth of the bottom of
the vertical cylinder are shown in Fig. 7. Figs. 8 and 9 show the values obtained for the radius of
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Table 6 - Summary of the geometrical parameters used for training spheres, horizontal cylinders, vertical cylinders,
vertical dykes, anticlines and synclines. The parameters are defined in Fig. 4. The units are in meters. The subscript
inc. means increment.

Zma Zmi Zinc Rma Rmi Rinc hma hmi hinc lma lmi linc Body

150 550 50 100 250 50 ----- ----- ----- ----- ----- ----- Sphere
1 5 0.5 1 4 0.25 ----- ----- ----- ----- ----- ----- H. Cyl.
10 50 10 ----- ----- ----- 400 400 0 10 60 10 V. Prism
200 600 100 200 1000 200 400 4000 400 ----- ----- ----- V. Cyl.
300 500 50 300 700 50 250 400 50 ----- ----- ----- Anticline
300 500 50 300 700 50 250 400 50 ----- ----- ----- Syncline



the anticline and the depth of the bottom of the syncline respectively. These three parameters
have been chosen because their determination by the classical interpretation technique is ex-
tremely difficult or totally inaccurate.

5. Conclusions

It has been demonstrated that qualitative gravity interpretation is possible with ANNs. The
training and tests were done with features derived from the principal anomaly profiles. All fea-
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Fig. 8 - Values of the radius of the anticlines obtained by the inversion with an (3.2.2) ANN. The absolute error is
shown as a function of the true depth. 
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tures were chosen in such a way that they did not depend on the density contrast and no estima-
tion of it was needed. The results obtained for recognition are remarkably accurate and can be
trusted at 99%.

The same kind of ANN was used for quantitative interpretation. After finding the right model
the best values for the model’s parameters were searched.

A training algorithm, which is less sensitive to local minimum and converges fast, was used
(Levenberg-Marquardt Back-Propagation Approximation). It was found that the results are
excellent when using very small networks. Networks with 2, 3 and 4 neurons respectively in the
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Fig. 9 - Values of the depth of the bottom of the synclines obtained by the inversion with an (3.2.2) ANN. The abso-
lute error is shown as a function of the true depth. 



hidden layers are sufficient to solve the problems. These ANNs were tested with numerous
anomalies. The ability of the networks to find the parameter values is remarkable. The average
error, in percent of all bodies and all parameters lies at 2% and is never higher than 5%. When
looking at the wide range of model parameters and the changes in density, which were used for
testing the ANNs, this result is excellent. 

Because all the calculations were based on synthetic data the capacity of ANN to interpret
real data still has to be tested.
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