
Abstract. A two-step approach for gravity field recovery from future SST- or SGG-
missions is discussed, where space-localizing base functions serve for modelling
the anomalous field. Results of a simulation study regarding scenarios of CHAMP
type (high-low GPS-SST) and GRACE type (high precision low-low SST) are
presented.

1. Introduction

The task of the envisaged SST/SGG-missions like CHAMP, GRACE, and GOCE is the
computation of a global gravitational field with high resolution and precision and - if possible -
with repetition in time. Global recovery approaches are aimed at the computation of spherical
harmonic models. But open questions are related to a violation of an ideal data coverage or, to
not well-defined boundary surfaces. The global support of the spherical harmonics does not allow
us to adapt precision to areas of geodynamical interest or to time-dependent phenomena.

The authors focus on a two-step approach for satellite data analysis (Fig. 1): first, the true
gravitational field is approximated by space-localizing kernel functions. In combination with
terrestrial data, this could supplement the satellite derived regional field information at this level.
In a second step, whether the “regional” solution covers the whole earth, or independent regional
solutions are merged into a global one in an appropriate way, spherical harmonic coefficients may
be derived by a simple summation process.

2. Modelling

The primary observation, Eq. (1), used in this study is based on the eigenfunction expansion
(Schneider 1984) of the intersatellite or gradiometry baseline Eq. (2)
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where

These (pseudo-) observations can be computed from original SST range r, range-rates r
.
, or

SGG differential acceleration data r
..
by numerical integration
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Fig. 1 - Scheme of two-step analysis.
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allowing a simple common processing of different data types as well as a certain degree of data
compression (Ilk et al 1995). On the model side, the anomalous field T is approximated using
isotropic space-localizing base functions Bj

which unlike spherical harmonics are non-orthogonal, i.e. they possess a full Gram matrix
(Bj, Bk)=(P)jk . Noisy observations are considered as bounded linear functionals in a reproducing
kernel Hilbert space H,

Minimizing a weighted sum of least-squares (from data noise as well as projection error) and
H-norm of T
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Simulate a gravity field (model) to be recovered: EGM96 (n=360)

Compute LEO and GPS orbits

Compute data from orbit

Corrupt data with errors

Recovery of gravity field

Compare functional (mean anomalies, geoidal height)➾quality of recovery
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Fig. 2 - Scheme of simulation study.
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leads to the well-known Tykhonov-regularized solution

with variance-covariance matrix

Finally Eq. (7) implies that spherical harmonic coefficients for T
~

are given by

3. Simulation study

The concept described above was verified in a simulation study regarding two idealized SST
mission scenarios. Fig. 2 provides a sketch of the simulation principle.

The basic mission configurations were:
1. GRACE scenario: 2 LEO’s, baseline 300 km, 25 GPS satellites;
2. CHAMP scenario: 1 LEO, 25 GPS satellites. A LEO orbit was chosen by a=6 732 266.20 m,

e=0.001, i=97.29°, mean altitude 354 km. According to the “snapshot” objective of GRACE,
a mission duration of 31 days was simulated. The white noise level was σ=1 μm/s for LEO-
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Fig. 3 - GRACE normal equation matrix.
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LEO range-rates, σ=3 cm for LEO-GPS ranges. All orbits were integrated numerically
applying the EGM96 gravity field model. The area under consideration was (λ, ϕ) ∈ [0°, 10°]
× [0°, 90°] with base function grid spacing of 1° × 1°.
Fig. 3 shows a) an “equatorial portion” as well as b) a “polar portion” of the resulting

GRACE normal equation matrix, the greyscale corresponding to | (AT Pll A)ij |. Clearly visible is
the stabilizing effect of the broadened grid spacing in the northernmost area.

Fig. 4 illustrates a) the LEO ground track pattern, b) mean residual gravity anomalies
computed from the EGM96 model with reference to the low-degree model, c) the recovery result
from the GRACE scenario, and d) absolute deviations. In Fig. 5 results are displayed for the
idealized CHAMP mission: a) gives the 5° × 5° mean anomalies from the EGM96 input, b) the
recovery result, and c) absolute deviations.

4. Conclusions

Aiming for a spatial resolution of 1° × 1° (100 km) in a GRACE/31days recovery simulation,
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Fig. 4 - Recovery of 1° ... 5° mean gravity anomalies from GRACE simulation.



we found an overall rms value of 6-7 mGal from the total deviations. The accuracy degrades in
areas of a rough gravity field, as clearly indicated in Fig. 4d. When removing features of less
than 300 km from the EGM96 anomalies by truncating the expansion at n=120, we found the
deviations distributed randomly with an rms value of 3-4 mGal. For the CHAMP scenario we
had an rms value of 4 mGal for 5° mean anomalies.
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Fig. 5 - Recovery of 5° mean gravity anomalies from CHAMP simulation.


