
Abstract. The combination of a rich geomorphology which includes lowlands as
well as high mountains and the high quality of the available source data proves
Austria to be an excellent test area for geoid computations. A dense field of gravity
anomalies and deflections of the vertical together with a high-resolution height
model are the ideal base to study different algorithms and methods for geoid
computation. The following case study, within the project of the recomputation of
the Austrian GEOID2000, investigates the combination of different data-sources
for a high-resolution geoid for areas with rough topography. The computations are
performed using Least Squares Collocation (LSC) and the remove-restore
technique. 

1. Introduction

The following geoid computation is done by LSC. The given gravity anomalies are used to
determine the parameters of the covariance function. This covariance function is used to
compute a purely gravimetric as well as a purely astrogeodetic geoid of Austria. The accuracy
of each solution is checked by fitting the geoid model to 40 GPS-reference points. The
advantage of combining the gravimetric and the astrogeodetic solution is subsequently shown.

The computation is performed by applying the well-known remove-restore technique. The
main idea of the remove-restore procedure is to model the long and short wavelengths of the
gravity field and to subtract their influence from the measurements.

Long wavelengths are modelled using an earth gravity model. In order to remove short
wavelengths, a high resolution height model is needed. Geoidal heights are computed based on
the remaining residual field of gravity anomalies or deflections of the vertical. Finally, the effect
of the removal is restored to the geoidal heights.
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2. Gravimetric geoid using LSC

In the following, the steps for the gravimetric geoid computation by LSC are given. As the
LSC method is not described in full detail, the reader is referred to Moritz (1980) for the
theoretical background, and to Sünkel (1987) for the application of the formulas for the geoid
computation. A purley gravimetric geoid solution using LSC was already presented by
Kühtreiber and Rautz (1996).

2.1. Gravity anomalies

A data set of 3671 gravity anomalies is used. Fig. 1 shows the data set which includes
irregularly distributed point values and gridded mean values. Within Austria, a sample of 2397
point gravity anomalies, out of all known gravity points, was selected to get a coverage of
approximately one point per 6 km × 6 km. Outside Austria, the mean distance between
neighbouring data points was extended to 16 km.

The actual amount of data for Austria has increased since this test data set was established.
The improved data set will be used for the final computation of Geoid2000. Italy, Switzerland
and Germany provided point values, while Hungary, Czech Republic, Slovakia and Slovenia
provided mean values with different block sizes. The difference between point values and mean

Fig. 1 - Gravity anomalies used for the computation.



values was neglected. In fact, the quality of the Slovenian data needs to be especially improved
for the final geoid solution of Geoid2000.

2.2. Gravity reduction

In the remove-restore concept, the effect of an earth gravity model and the effect of the
topography are removed from the observed gravity by

with ΔgISO , the topographic-isostatically reduced gravity anomaly, derived from the
measurements g by applying the free-air reduction F, the reduction due to an earth gravity
model ΔgEGM and the topographic-isostatic reduction ΔgTI . The normal gravity computed on the
ellipsoid of GRS80 is denoted by γ. According to Heiskanen and Moritz (1967), g + F - γ is
called free-air anomaly ΔgFA. 

The earth gravity model EGM96 was used to compute ΔgEGM. The topographic-isostatic
reduction ΔgTI was computed by an adapted version of TC from Forsberg (1984). The digital
elevation model used as input for TC was established by the Federal Office of Metrology and
Surveying for the project GEOID2000. The elevation model is based on grids with different
resolutions determined photogrammetrically. The grid distances of these grids vary from 30 m
× 30 m, for rough topography to 160 m × 160 m in flat areas. From these base models, a digital
elevation model was derived with the uniform resolution of 1"40625 × 2"34375, or
approximately, 44 m × 49 m, see Graf (1996). Table 1 shows that the standard deviation of the
free-air anomalies is lowered considerably to ±24.9 mGal by the reduction process.
Nevertheless, a trend remains in the isostatic anomalies. It has its origin in the incomplete
isostatic compensation of the Eastern Alps.

2.3. Gravimetric geoid by LSC

COVARIANCE FUNCTION. - The well-known Tscherning-Rapp covariance function model was
used for the following LSC solutions. The global covariance function of the gravity anomalies

Δ Δ Δg g F g gISO EGM TI= + − − −γ ,
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Table 1 - Gravity reduction using the standard density of 2.67g/cm3 and the geopotential model EGM96. Anomalies
are given in mGal. Statistics based on 3671 points.

Min Max Mean Std.dev.

ΔgFA -144.3 200.7 9.2 ±43.3 
ΔgEGM-red -217.6 133.8 -14.2 ±38.7 
ΔgISO -181.6 38.7 -18.9 ±24.9 

(1)



Cg(P,Q) given by Tscherning and Rapp (1974, p. 29) is written as 

where Pn(cosψ) denotes the Legendre polynomial of degree n, ψ is the spherical distance
between P and Q and A, B and s are the model parameters. A closed expression for (2) is
available in (Tscherning and Rapp, 1974, p. 45). 

The local covariance function of gravity anomalies C(P,Q) given by Tscherning-Rapp can
be defined as

This expression may be written in the form
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Fig. 2 - Difference between the gravimetric geoid and the geoid obtained by GPS and levelling. Black dots mark the
40 GPS-reference points. Contour interval 0.1 m.

(2)

(3)

(4)



where Cg(P,Q) is given by (2) and its closed form.
Modelling the covariance function means in practice fitting the empirically determined

covariance function (through its three essential parameters; the variance C0, the correlation
length ξ and the variance of the horizontal gradient G0H) to the covariance function model.
Hence the four parameters A, B, NN and s are to be determined through this fitting procedure. 

The essential parameters of the empirical covariance parameters for 2397 gravity stations in
Austria are 580.4 mGal2 for the variance C0 and 40.2 km for the correlation length ξ. The value
for the horizontal gradient G0H was roughly estimated by 100 E2.

For the fixed value B=24 the following Tscherning-Rapp covariance function model
parameters were fitted: s = 0.998747, A=529.74 mGal2 and NN=78.

FITTING THE GRAVIMETRIC GEOID TO GPS-REFERENCE POINTS. - The gravimetric geoid is obtained
after restoring the effect of the earth gravity model EGM96 and the indirect effect caused by the
topographic-isostatic reduction to the predicted geoid (LSC-output). The difference between the
gravimetric geoid and the geoid derived from GPS and levelling is shown in Fig. 2. The
difference shows a long-wavelength character with bigger values near the borders of Austria.
The character of the difference is mainly caused by the influence of distant zones on the
gravimetric geoid. If the difference is modelled by a fourth order polynomial regression surface,
the remaining residuals ΔNGRAV are small with a standard deviation of ±3.5 cm. For 50% of the
points the difference is less than ±2.0 cm (see details in Table 3).

3. Astrogeodetic geoid using LSC

3.1. Deflections of the vertical

A data set of 706 deflections of the vertical is used. Fig. 3 shows all the measurements. This
data set was already used for the Austrian geoid computation by Sünkel (1987).

3.2. Reduction of the deflections of the vertical

The topographic-isostatically reduced deflections of the vertical can be expressed by 

where the subscript obs refers to the observed deflections, the subscript TI refers to the effect

η η η η
ISO obs TI EGM

= − −  ,

ξ ξ ξ ξ δφISO obs TI EGM= − − −  ,
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(5)

(6)



of the topography and its compensation on the deflection components and the subscript EGM

refers to the effect of the reference field on the deflection components. δφ is the reduction
according to the curvature of the plumb line. Table 2 shows the detailed statistics of the
reduction for ξ and η.

3.3. Astrogeodetic geoid by LSC

The astrogeodetic geoid was computed using the covariance function determined in Section
2.3.

In analogy to the gravimetric geoid, the astrogeodetic geoid is obtained after restoring the
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Table 2 - Reduction of the deflections of the vertical using the standard density of 2.67g/cm3 and the geopotential
model EGM96. Statistics based on 706 points.

ξξ (arcsec) ηη (arcsec)

Min Max Mean Std.dev. Min Max Mean Std.dev.

ξ,ηobs -14.2 24.8 3.7 ±6.3 -15.5 17.7 2.8 ±5.6 
ξ,ηEGM-red -12.8 16.1 0.7 ±4.1 -14.6 13.7 0.9 ±3.7 
ξ,ηISO -12.4 10.0 -1.4 ±4.5 -9.4 8.8 -0.8 ±2.7 

Fig. 3 - Measured deflections of the vertical used for the computation.



effect of the earth gravity model EGM96 and the indirect effect caused by topographic-isostatic
reduction to the predicted geoid (LSC-output). Fig. 4 shows the difference between the
astrogeodetic geoid and GPS-derived geoidal heights. While the differences are bigger, as in the
gravimetric case, they are smoother with a mainly west-east trend.

4. Combination of astrogeodetic and gravimetric geoid solution

Before the combination of the gravimetric and astrogeodetic solution is performed, the
agreement of both solutions is checked. The main difference can be expressed by a high order
polynomial trend surface. Fig. 5 shows the residuals after removing a fourth order polynomial
regression surface from the differences. For more than 70% of the area the agreement is better
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Fig. 4 - Difference between the astrogeodetic geoid and the geoid obtained by GPS and levelling. Contour interval
0.1 m.

Table 3 - Remaining differences between the gravimetric geoid NGRAV, the atrogeodetic geoid NASTRO and the
combined geoid solution NCOMB and a geoid derived by GPS and levelling after subtracting a fourth order polynomial
trend. Statistics based on 40 points given in cm.

Min Max Std.dev. No. of points with 

ΔΔN < ±2cm

ΔNGRAV -6.9 8.1 ±3.5 20 
ΔNASTRO -7.5 10.5 ±3.4 23 
ΔNCOMB -6.3 7.1 ±3.1 25 



than ±3 cm (shaded area in Fig. 5). The biggest differences occur at the southern border. The
reason for this is the lack of gravity data, as well as the extensive uncertainties of the Slovenian
gravity data. Differences near the border are also influenced by the fact that deflections of the
vertical were used only inside Austria. Overall, the differences show no correlation with
topography. Further investigations are needed to distinguish between differences caused by
measurement/errors and differences caused by an uneven data distribution. 

The combination between the two geoid solutions was done by forming the simple
arithmetic mean between the gravimetric solution and the astrogeodetic solution with the help
of the previously described regression surface. Table 3 shows the accuracy of the three different
geoid solutions, which is expressed by the remaining residuals after fitting the geoid solutions
to the geoid derived by GPS and levelling, and neglecting a fourth order polynomial. Although
the ratio: number of deflections to number of gravity measurements, is one to five, the accuracy
is about the same. The best accuracy is reached for the combined solution, where more than
60% of the points have residuals at less than ±2 cm. 

5. Conclusions

The combination of the astrogeodetic and gravimetric geoid solutions improves the
accuracy of the geoid. Even a simple chosen combination of measurements has the advantage
that on the one hand an external check of the measurements is possible, and on the other the
resulting geoid accuracy can be improved. Nevertheless, further investigation into better
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Fig. 5 - Residual difference between gravimetric and astrogeodetic geoid solutions after subtracting a fourth order
polynomial trend surface. The shaded areas denote regions with a difference less than ±3 cm. Contour interval 3 cm.



algorithms, for combining gravity and deflections of the vertical, is needed.
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