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Abstract. Different geoid solutions for the Egyptian south-western desert are
carried out in this investigation. The available data for this paper are 2682
measured gravity values and a set of fine 30" x 30" and coarse 3' x 3' Digital
Height Models for the area under investigation. The EGM96 geopotential earth
model has been used for removing the effect of the reference filed from the
gravity data. The geoid is computed using various gravity reduction techniques.
They are: the free-air, the Airy-Heiskanen isostatic, the Pratt-Hayford isostatic,
the Vening Meinesz isostatic, the Helmert condensation and the Rudzki inversion
reduction techniques. The reduced gravity anomalies are gridded on a 3' x 3'
geographical grid using the least-squares interpolation technique with local
covariance functions. These gridded reduced anomalies are used to compute the
different geoid solutions in the frequency domain using the spherical 2D FFT
technique. The relative difference between the different geoid solutions has an
internal accuracy of about 2.5 cm.

1. Introduction

It is known that, in principle, all gravity reduction techniques should lead to the same geoid
if they are properly applied and the indirect effect, if any, is taken into account (Heiskanen and
Moritz, 1967, p. 151). The aim of this investigation is to compare different geoid solutions
based on various gravity reduction techniques. These techniques involve the free-air, the Airy-
Heiskanen isostatic, the Pratt-Hayford isostatic, the Vening Meinesz isostatic, the Helmert
condensation and the Rudzki inversion reduction techniques. The geoid is computed in the
frequency domain using the spherical 2D FFT technique (Strang van Hees, 1990).
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Table 1 - Statistics of the gravity anomalies after removing the EGM96 reference field. All values are in mGal.

reduction type minimum maximum mean standard deviation
free-air -21.02 27.33 -1.04 8.35
Airy-Heiskanen isostatic -28.14 25.17 -5.90 8.41
Pratt-Hayford isostatic -31.27 23.08 -8.81 8.52
Vening Meinesz isostatic -28.32 25.32 -5.51 8.38
Helmert condensation -21.00 28.26 -1.39 8.49
Rudzki inversion -20.77 28.68 -0.92 8.74
2. The data

A set of 2682 measured gravity stations is available for this investigation. These stations are
located in the data window (22° < ¢ < 25°, 27.5° < A < 30°). The values of the measured gravity
are ranging between 978 665.6 mGals and 978 889.1 mGals with an average of 978 757.1 mGals
and a standard deviation of about 47 mGals. For the terrain reduction computation, a set of fine
and coarse Digital Height Models (DHM's) is needed. A 30" X 30" fine DHM for the data window
is available. The heights range between 148 m and 563 m with an average of 312 m and a
standard deviation of about 71 m. A 3' x 3' coarse DHM is available for a larger window (20.5°
< $<26.5°,26 < A<31.5°). Both models are extracted from the global 30" x 30" DHM provided
by the NOAA.

3. Gravity reduction techniques

The gravity reduction techniques used in this investigation involve the freeair, the Airy-
Heiskanen isostatic, the Pratt-Hayford isostatic, the Vening Meinesz isostatic, the Helmert
condensation and the Rudzki inversion reduction techniques. For more details concerning the
theoretical background of these techniques, the reader is kindly asked to refer to (Heiskanen and
Moritz, 1967). For the Vening Meinesz isostatic model, the reader is invited to refer to (Abd-
Elmotaal, 1993). The necessary formulas for the Helmert condensation reduction may be found
in (Heck, 1993).

The TC-program originally written by Forsberg (1984) has been used in the gravity reduction
process after a great modification made by Abd-Elmotaal (1998). For the recovery of the long
wavelength part of the gravity field, the EGM96 has been used for the remove-restore process.
Table 1 lists the statistics of the gravity anomalies after removing the effect of the EGM96
reference field.

The reduced gravity anomalies are gridded on a 3' X 3' geographical grid using the least-
squares interpolation technique with local covariance functions. For more details about that
gridding technique and the used covariance function models, the reader is kindly invited to see,
for example, (Abd-Elmotaal, 1992; Kraiger, 1988).
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4. Stokes' integral using spherical 2D FFT technique

The geoid undulation N can be computed from the gridded gravity anomalies Ag by using
the well-known Stokes’ integral (Heiskanen and Moritz, 1967, p. 94)

N=%£JAg S(y)do, )

where ¥ is the normal gravity, R is the mean earth's radius and S(y) stands for the Stokes’
function given by Heiskanen and Moritz (1967, p. 94)

S(l//)=§—4—6s+10s2—(3—6s2)ln(s+s2) 2)

with

T W
=sin—, 3
§=sinJ 3)

and v is the spherical distance between the computational point P and the running point Q, given
by Strang van Hees (1990, p. 236)

sin’ %I/IPQ = sin’ %(d)P — )+ sin” %(/'LP —Ap)cosd, cosd,. 4)

For discrete integration the area is divided into blocks of equal A¢ and A A, so that the Stokes’
integral (1) can be replaced by the summation

AGA
R d’y’l D' (Ao cos P )S(W pp)- (5)
Qo

N(¢P’A‘P) = 4

When P coincides with Q, this leads to a singularity problem. In this case, the central block
has to be excluded and computed separately. If the central area were a circle of radius 7, the
contribution N; to the geoid undulation is given by (Heiskanen and Moritz, 1967, p. 122)

N =" ag (6)
Y

Only a small error will happen if we use (6) for a rectangular block. In this case, r is computed
in such a way that the circle would have the same area as the rectangular block, i.e.,

. R\/ A¢A)Lcos¢‘ (7)

T

The Stokes’ integral (1) would be a convolution integral if the spherical distance Yy, were a
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function of (¢ - ¢, ) and (4, - A, ) only. Eq. (4) shows that v}, is a function of (¢ - ¢, ) and
(Ap - Ao ) as well as of @ and ¢, . Consequently, Eq. (1) does not fulfill the requirement of a
convolution integral. However, if we replace @» and ¢, by the mean latitude of the area ¢,, , Eq.
(4) will then be given by

sin’ %WPQ = sin’ %(Q)P —¢,)+sin’ %(QLP —Ag)cos’ @, (8)

which is a function of (¢p - ¢, ) and (4, — 4,) only. Note that ¢,, is a constant for the whole area.
Thus (1) is now a full convolution integral. Eq. (1) can symbolically be written in a convolution
integral form as

RAGAA

N(¢P’)“P) = 47_”/

[AgQ cos @y * S(Y pg )] 9)

By using the FFT technique, Eq. (9) can be written as (Schwarz et al., 1990)

N(¢P’;I‘P) =

RAZM F{F(Agg cosgp ) F{S(w )]} (10)

where F and F ' stand for the Fourier transform and the inverse Fourier transform, respectively.
Eq. (10) is the simple spherical 2-D FFT approach given by Strang van Hees (1990).

5. Geoid solutions and comparisons

The geoids computed from the different gravity reduction techniques are shown in Figs. 1 to
3. The statistics of these geoids are listed in Table 2. Comparing the different geoid solutions
immediately shows that the structure of the geoid in the eastern part of the result window is
nearly the same. Some differences are remarkable in the western part. In general, all isostatic
geoids have nearly the same structure. The free-air and the Rudzki inversion geoids have the
same features. They are slightly different from the Helmert condensation geoid.

Fig. 4a shows the absolute difference between the Vening Meinesz (representing the isostatic

Table 2 - Statistics of the different geoid solutions. All values are in meters.

reduction type minimum maximum mean standard deviation
free-air 12.23 13.92 13.43 0.36
Airy-Heiskanen isostatic 12.24 14.14 13.48 0.42
Pratt-Hayford isostatic 12.19 14.22 13.46 0.45
Vening Meinesz isostatic 12.30 14.24 13.55 0.43
Helmert condensation 12.21 13.88 13.36 0.36
Rudzki inversion 12.30 13.95 13.43 0.37
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Fig. 1 - (a) The free-air geoid. (b) The Airy-Heiskanen isostatic geoid. Contour interval: 5 cm.
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Fig. 2 - (a) The Pratt-Hayford isostatic geoid. (b) The Vening Meinesz isostatic geoid. Contour interval: 5 cm.

geoid) and the free-air geoids. These differences range between —0.05 m and 0.53 m with an
average of —0.13 m and a standard deviation of about 0.13 m. Fig. 4a shows some trend
behaviour for these differences. This trend has been removed using a third degree surface
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Fig. 3 - (a) The Helmert condensation geoid. (b) The Rudzki inversion geoid. Contour interval: 5 cm.
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Fig. 4 - (a) Absolute difference between the Vening Meinesz isostatic and the free-air geoids. (b) Difference between

the Vening Meinesz isostatic and the free-air geoids after removing a third degree trend surface polynomial. Contour
interval: 5 cm.

polynomial. Fig. 4b shows the difference between the Vening Meinesz isostatic and the free-air
geoids after removing the trend. These differences range between -8 cm and 8 cm with a standard
deviation of about 2.5 cm.
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6. Conclusions

The geoid has been computed for the Egyptian south-western desert using free-air, Airy-
Heiskanen isostatic, Pratt-Hayford isostatic, Vening Meinesz isostatic, Helmert condensation and
Rudzki inversion gravity reduction techniques in the frequency domain using the spherical 2D
FFT technique. The isostatic geoids have nearly the same structure. The free-air and the Rudzki
inversion geoids have the same feature. The relative difference between the free-air and the
Vening Meinesz isostatic geoids has an internal accuracy of about 2.5 cm.
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