
Abstract. In this paper we discuss the use of variational methods for the determination
of the disturbing potential as a solution of the geodetic boundaryvalue problem. The
emphasis is on the interpretation in terms of function bases and the construction of
elements in Galerkin’s matrix. An approximation of these elements is shown and its
accuracy examined for a system of base functions given by elementary potentials of
Laplace’s equation. It is demonstrated how the accuracy depends on the telluroid’s
topography and the depth of individual mass concentration points.

1. Introduction

The determination of the disturbing potential T from surface gravity data is usually treated as
a classical solution of the geodetic boundary value problem. (T is a smooth function which
satisfies Laplace’s equation and the respective boundary condition point-wise.) In this paper, on
the contrary, T is defined by means of an integral identity connected with the boundary value
problem in question. This is the basic idea of variational methods, see Nečas (1967) or Rektorys
(1974). T as defined above represents a generalization of the classical solution, see also Holota
(1996, 1997a, 1997b, 1998a, 1998b, 1999).

For our solution domain Ω given by the exterior of the telluroid we consider Sobolev’s weight
space W2

(1) (Ω) endowed with inner product

where xi , i = 1, 2, 3, are rectangular Cartesian coordinates in Euclidean 3-dimensional space R3.
The boundary ∂Ω of Ω is supposed to have a certain degree of regularity. Putting Ω’ = R3–Ω ∪∂Ω,
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we assume that Ω’ is the domain with Lipschitz’ boundary.
Now we define the solution of our problem as a function T ∈ W2

(1) such that

holds for all v ∈ W2
(1), provided that ((u, v)) is a bilinear form connected with the geodetic

boundary value problem and f is a square integrable function on ∂Ω.
The geodetic boundary value problem is an oblique derivative problem and the respective

bilinear form has been discussed in Holota (1996, 1997a, 1998a, 1999). It turned out that a
modification is more convenient. We first denote, by U, the potential of the model (normal)
gravity γ, γ = ⎜grad U ⎜and then put ((u, v)) = A(u, v) + a(u, v), where

with n being the (unit) outer normal of ∂Ω. and h denoting the direction of the outward normal
to the level surface of the model gravity potential. As regards f , we put 

Here ΔW and Δg stand for the potential and the gravity anomaly, respectively and ∂T/∂t (referred
to ∂Ω.) is a component of grad T in the tangential plane of an equi-potential surface of U in the
direction of maximum inclination of the telluroid’s topography.

It is well-known from (Molodensky et al., 1960, eq. V.5.22) or (Heiskanen and Moritz, 1967,
eq. 8-21) that (∂T/∂t) tan (h, n) = γ (ξ tan β1 + η tan β2 ), where ξ and η are the Molodensky
defined components of the detection of the vertical and β1 , β2 are the angles of the slopes of the
north-south and east-west telluroid profiles. Since β1 and β2 are usually small, approximate
values of ξ and η are usually sufficient.

Finally, in our formulation T is defined as an element among an excessively great multitude
of functions. It can be shown that it is enough to consider a space H2

(1) (Ω) of those functions from
W2

(1) (Ω) which are harmonic in Ω and to reformulate our definition, i.e. to look for T∈H2
(1) (Ω)

such that Eq. (2) holds for all ν ∈ H2
(1) (Ω), see Holota (1998a, 1999).

2. Galerkin’s Matrix

Taking into consideration the practice applied in geodesy, we agree that it is convenient to use
Runge’s property of Laplace’s equation and to work with a space of functions which are
harmonic outside a domain B completely embedded in the telluroid. Putting B’ = R3 – B, we will
denote this space by Η (B’).
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Following Neyman (1979) and an analogue to his reasoning related to the so-called
Bjerhammar sphere, one can show that in terms of the norm ⎜⎜u ⎜⎜1 ≡ (u,u)1

1/2 the space H(B’) is
dense in H2

(1) (Ω). This enables an approximation of T by means of 

where ci
(n) are numerical coefficients and νi are members of a function base of H (B’). Moreover,

Eq. (2) offers a natural starting point for a numerical interpretation of the problem. Indeed, for
the coefficients ci

(n) we can immediately write Galerkin’s system

where j = 0,..., n. Note that the boundary value problem under consideration is close to Stokes’
problem. Thus system (6) is either weakly conditioned or even singular. A trick from
(Hörmander, 1975) may be used as a way out, see also Holota, (1996).

In this paper we take for νi, i = 0,..., n a set of elementary potentials

Our aim is to approach the computation of the elements ((νi, νj)). Assume that the domain Ω’
is star-shaped at the origin and define yi’ as a point of intersection of ∂Ω. with a radial ray passing
through the point yi . For i, j = 0,..., n put Rij = (⎜yi’⎜+ ⎜yj’⎜)/2 or Rij = maxi, j [ ⎜yi’⎜, ⎜yj’ ⎜] in case
that (⎜yi’ ⎜ + ⎜yj’⎜)/2 ≤ maxi, j [ ⎜yi⎜, ⎜yj ⎜ ]. Now, writing R instead of Rij for simplicity, we try to
approximate ((νi, νi)) by means of ((νi, νj))R = AR (νi, νi) + aR (νi, νj), where

and SR ≡ {x ∈ R3 ; ⎪x⎪> R}. (R can be also defined in an average sense so that in a surrounding
of yi’ and yj’ the sphere ∂SR approximates the topography of the telluroid.) The diagonal terms
can be computed by means of a standard integration. We obtain

(As an example take R = 6378 km and R -⎪yi⎪ = 20 km. Then ((νi, νi))R = 0.157 km-1 .)
For the off-diagonal terms the computation is a bit more complicated. It can be found in

Holota (1999). The result is as follows:
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and ψij is the angle between the vectors yi and yj . Note that in Eqs. (11) the magnitude of
individual terms of the series for the computation of ∂S decreases very quickly. Therefore, it is
enough to sum up its first terms only to guarantee sufficient accuracy.

3. Accuracy of an approximate element

The problem now is to examine the difference dij = ((νi, νj)) - ((νi, νj))R . Putting D’ = Ω−SR,
D’’ = SR−Ω and D = D’ ∪ D” , we first define 

Then, referring to Holota (1998b), we can write immediately that

In order to give an example let us consider the so-called simple Molodensky problem. In this
case h/⎪h⎪ = x/⎪x⎪ and (1/γ) (∂γ/∂h) = -2/⎪x⎪ so that M1 = 2/Rmin and M2 = 2/R2

min while M3 =
M4 = 0. Thus for νi, i = 0,..., n, given by eq. (7), we have
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(Here D is actually related to i and j through the definition of R = Rij . Thus we should also write
Dij, but for simplicity we will omit this notation.)

The estimation of Jij
(nm) is a problem of a technical nature. Details are in Holota (1998b). We

approach the accuracy of the diagonal terms first, i.e. we will discuss ⎪dii⎪. The individual
estimates contain a number of parameters which should be adapted to statistics of the topography
of the Earth and to the depth of mass concentration points. For this purpose define Dint ≡ {x ∈ D;
0 ≤ ψ ≤ ψ0} and Dext ≡ {x ∈ D; ψ0 ≤ ψ ≤ π} ,where ψ is the angle between the vectors x and yi.
Thus for ψ0 ∈ (0, π) we can put

Choose now e.g. ψ0 = 2°and suppose that Rint
min −⎪yi⎪ = 20 km. In addition assume as a mere

illustration that Rint
max-R

int
min = 0.2 km and Rext

max - Rext
min = 20 km and take approximately Rint

min ≈ Rext
min ≈

Rmin ≈ 6356 km. Under these parameters we arrive at ⎪dii⎪ ≤ 0.0033 km-1 . Comparing this
estimate with ((νi, νi))R obtained in the example in Sect. 2, we can see that for R -⎪yi⎪ = 20 km
and the topography characterized as above ((νi, νi))R represents ((νi, νi)) with a relative accuracy
of 2.1%. Nevertheless we have good reasons to believe that in reality the accuracy is much better. 

As regards the off-diagonal terms we can repeat, with some modifications, similar steps as
above and show that their accuracy is of the same level as that of the diagonal terms.
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