
Abstract. Masses associated with the local topography are a dominant source of short
wavelength gravity field variations. In the modeling of the gravity field it is thus an
advantage to eliminate the effect of the terrain in a remove-restore procedure. In this
process, terrain reductions are computed for the observation stations at the Earth's
surface, considering either the complete topography, the topography and its isostatic
compensation, or the residual topography (RTM technique). Hence, the reduced
gravity field observations are referring to the actual ground level. Therefore,
Molodensky’s theory, considering data on non-level surfaces, should be applied in the
traditional gravity field modeling approaches, while in collocation this is handled
directly through height dependent covariance functions. In this paper, we provide
numerical examples for the computation of the Molodensky series terms associated
with the traditionally unreduced observations as well as in connection with various
terrain-reduced data. Due to the smoothing, resulting from the terrain reductions, the
magnitude of the Molodensky terms is reduced as well and the series convergence is
improved. The computations are based on the Fast Fourier Transform (FFT) technique.
The numerical tests are done in a mountainous area of the European Alps. The terrain
data are on grids with various grid spacings starting at a resolution of 200 m. One of
the main goals of this study is to investigate the magnitude of the Molodensky terms
with regard to the computation of an improved European quasigeoid model.

1. Introduction

Molodensky’s theory takes the Earth’s surface as the boundary surface and the corresponding
solution consists of integrals involving gravity anomalies and topographic heights (Molodensky
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et al., 1962; Moritz, 1980). In practical evaluation procedures, the only requirement for both input
data sources is to be available on the same grid. There are different solutions for the Molodensky
boundary value problem available. Molodensky et al. (1962) gave a solution as a series of double
integrals on the sphere by the use of a surface layer. Other investigators used a kind of
linearization of the series (Brovar, 1964; Pellinen, 1972), or derived a solution by analytical
continuation of the gravity anomalies to a level surface (Moritz, 1980; Sideris, 1987). Although
some of the solutions are better suited for practical evaluation, they are all termwise equivalent
in planar approximation (Li et al., 1995). The main objective of this paper is to provide numerical
results for height anomaly predictions based on Molodensky’s solution in connection with
different terrain reductions for the gravity data. The numerical tests are done in a mountainous
area of the Alps. The magnitude of the Molodensky series terms to the 3rd order is studied for
different terrain-reduced data sets and comparisons of the different solutions with GPS/leveling
data are given. From these results some interesting conclusions are derived for the computation
of a new European quasigeoid model. 

2. Remove-Restore technique

The introduction of FFT techniques in gravity field determination also contributes to the
efficient computation of the Molodensky series terms. In this study, the spectral 1D FFT
(Haagmans et al., 1993) method on the sphere is combined with the remove-restore procedure.
The height anomaly computation is performed according to the eq.:

P is the observation point at the Earth’s surface and Q is the corresponding point on the telluroid.
The ζGM term gives the contribution of the geopotential model (EGM96), while the ζH term gives
the contribution of the topography. The term ζ’ gives the contribution of the reduced free-air
gravity anomalies with the effects of the geopotential model and the topography removed.

3. Molodensky’s series

In Molodensky’s theory, the height anomaly can be expressed as a series (Brovar, 1964;
Moritz, 1980; Li et al., 1995) of the form:

where 
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G0=Δg´ are the gravity anomalies on the telluroid. The next three terms take the form:

where l0=2R sin (ψ/2), ψ is the spherical distance between the running point and the computation
point, and β is the total terrain inclination angle. More details about this formulation and its
practical implementation can be found in Li et al. (1995). All the integrals in the above formulas
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Fig. 1 - The 7.5"×7.5" DTM for the test area (Alps).
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are evaluated by the efficient 1D FFT technique.

4. Numerical results and discussion

A mountainous 1.5°×2.5° area in the European Alps is chosen for the numerical tests. This
area in the European Alps (45.5° N - 47.0° N, 6.5° E - 8.5° E) includes the Mont Blanc massif,
being the highest peak in the entire European Alps.

The following topographic height and gravity grids were used: 7.5"×7.5", 15"×15", 30"×45",
60"×90", 2'×3', 5'×5'. The statistics of these Digital Terrain Models (DTMs) as well as the
statistics of the inclinations of each terrain model are shown in Table 1. Fig. 1 shows the
7.5"×7.5" DTM for the test area. The numerical examples include the traditionally unreduced
observations as well as various terrain-reduced data using the simple terrain correction (t.c.), the
complete topographic (Bouguer) reduction (TOPO), the topographic-isostatic reduction
(TOPO/ISO) and the RTM reduction. Figs. 2 and 3 show the free-air and RTM30-reduced gravity
anomalies after the subtraction of the global model EGM96. Table 2 gives the statistics of the ζ0,
ζ1, ζ2, ζ3 terms for the 30"×45" (1 km x 1 km) height and gravity grid. The gravity data are used
in an unreduced form (only the removal of the EGM96 geopotential model is made) as well as
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Fig. 2 – Free-air gravity anomalies in the Alps test area (after the subtraction of EGM96).



after applying different kinds of terrain reductions described above.

The results of Table 2 show that the expected smoothing of the gravity data due to the

different reductions results in a corresponding reduction of the magnitude of the ζn -terms, when

comparing with the corresponding results of the unreduced data. The smoothing of the gravity

data also contributes to a faster convergence of the Molodensky series. This is most significant

for the RTM-technique either using a 15' or 30' reference topography grid (RTM15 and RTM30

resp., see Table 2). In Table 3, the statistics of Gn as well as the ζn terms are summarized for the
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Fig. 3 - RTM30-reduced gravity anomalies in the Alps test area (after the subtraction of EGM96).

Grid Size No Elevations Terrain Inclinations
Mean σσ Min Max σσ Max
[m] [m] [m] [m] [°] [°]

7.5"×7.5" 691 200 1541.7 834.1 163.0 4767.0 11.4 69.6
15"×15" 172 800 1541.7 832.8 164.0 4701.3 10.3 63.0
30"×45" 28 800 1541.7 826.9 166.3 4548.9 8.2 51.2
60"×90" 7 200 1541.7 813.4 168.6 4216.5 6.1 34.6

2'×3' 1 800 1541.7 785.9 171.5 3791.2 3.9 25.1
5'×5' 432 1541.7 738.2 197.7 3364.7 2.0 10.6

Table 1 - Statistics of the DTMs for the Alps area.



30"×45" and the 7.5"×7.5" data grids associated with the RTM30-reduction technique. Studying
simultaneously the results of Tables 2 and 3, it is apparent that for the 30"×45" data grids mainly
the ζ0 (G0) terms are significant in height anomaly predictions. The contribution of the ζ1 (G1)
terms reaches the level of about 10 cm. The ζ2 (G2) terms contribute up to 1 cm to the height
anomalies, while the contribution of the ζ3 (G3) terms is almost negligible. Comparing these
results with those obtained for the unreduced data, one can observe that for the unreduced data
not only the first two terms but also the ζ2 (G2) and ζ3 (G3) terms contribute up to 11 cm to the
height anomaly prediction. 

In order to further investigate the effects of the grid spacing on the height anomaly
predictions, numerical evaluations are also done for the dense 7.5"×7.5" grid, being available in
the Alps test area. Again, the statistics are given in Table 3 only for the RTM-corrected gravity
data. The statistics of the results are comparable to the corresponding results based on the
30"×45" grid. As before, only the first two terms mainly contribute to the height anomaly
prediction, while the contribution of the ζ2 (G2) and ζ3 (G3) terms is considerably smaller
(reaches the level of 3 cm).

From all these results one can conclude that the smoothing of the gravity data by the different
gravity reductions and mainly by the RTM procedure leads to a considerable reduction of the
magnitude of the ζn (Gn) terms. It is worth mentioning that in Table 3 some of the
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Table 2 - Statistics of the ζn terms for the Alps test area (30"×45").

Quant. Top. Red. Mean [m] σσ [m] Rms [m] Min [m] Max [m]

ζ0 - -0.391 0.463 0.606 -2.179 0.677
ζ1 - 1.007 0.255 1.038 0.446 1.507
ζ2 - -0.016 0.012 0.020 -0.064 0.019
ζ3 - -0.054 0.016 0.056 -0.108 -0.022

ζ0 TOPO -12.874 2.556 13.126 -17.357 -6.786
ζ1 TOPO -0.033 0.099 0.104 -0.344 0.412
ζ2 TOPO -0.029 0.019 0.035 -0.131 0.051
ζ3 TOPO 0.000 0.002 0.002 -0.024 0.020

ζ0 TOPO/ISO -4.856 1.389 5.050 -7.325 -2.376
ζ1 TOPO/ISO -0.027 0.044 0.052 -0.199 0.173
ζ2 TOPO/ISO -0.016 0.010 0.019 -0.071 0.017
ζ3 TOPO/ISO 0.000 0.001 0.001 -0.008 0.004

ζ0 RTM15 0.747 0.432 0.863 -0.304 1.603
ζ1 RTM15 0.066 0.018 0.069 -0.021 0.147
ζ2 RTM15 -0.001 0.004 0.004 -0.022 0.018
ζ3 RTM15 -0.001 0.001 0.001 -0.008 0.004

ζ0 RTM30 0.550 0.331 0.642 -0.277 1.452
ζ1 RTM30 -0.002 0.012 0.012 -0.062 0.037
ζ2 RTM30 -0.001 0.002 0.003 -0.011 0.012
ζ3 RTM30 0.000 0.000 0.000 -0.002 0.002



minimum/maximum values of the Gn terms (n ≥ 1) are unexpectedly large. This implies that, in

very rough mountainous areas, the grid spacing should not be too small in order to avoid the

instability problem related to the Molodensky series. It is known that the Molodensky series

converges only when the terrain inclination angle is less than 45° (Li et al., 1995), which cannot

be guaranteed if the grid spacing is too small in rugged terrain. A grid size of about 1 km appears

to be a reasonable value when using terrain-reduced data.

In another numerical test the computed height anomalies were compared with corresponding

values derived by GPS/leveling. In the case that only orthometric heights are available, a trans-
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Table 3 - Statistics of the Gn and ζn terms for the Alps test area using RTM30-reduced data.

30"××45" No: 28,800 7.5"××7.5" No: 691,000

Mean σσ Rms Min Max Mean σσ Rms Min Max
[mGal] [mGal] [mGal] [mGal] [mGal] [mGal] [mGal] [mGal] [mGal] [mGal]

G0 6.72 21.28 22.32 -46.94 94.29 6.72 21.29 22.32 -47.07 94.40
G1 -0.01 5.59 5.59 -47.65 35.62 -0.01 9.67 9.67 -130.36 114.82
G2 0.00 1.00 1.00 -8.27 12.17 0.09 2.98 2.98 -49.51 95.68
G3 0.00 0.48 0.48 -7.54 8.08 0.00 2.27 2.27 -190.15 273.49

Mean σσ Rms Min Max Mean σσ Rms Min Max
[m] [m] [m] [m] [m] [m] [m] [m] [m] [m]

ζ0 0.550 0.331 0.642 -0.277 1.452 0.550 0.332 0.643 -0.280 1.457
ζ1 -0.002 0.012 0.012 -0.062 0.037 -0.002 0.013 0.013 -0.080 0.044
ζ2 -0.001 0.002 0.003 -0.011 0.012 0.006 0.007 0.009 -0.021 0.034
ζ3 0.000 0.000 0.000 -0.002 0.002 0.000 0.000 0.000 -0.011 0.014

Table 4 - Statistics of the differences between GPS/leveling and the predicted ζ (n).

Bias fit (1 par.) Bias and tilt fit (3 par.)
Quantity Top. Red. No Rms Min Max Rms Min Max

ζ(0) - 25 0.471 -0.813 0.673 0.132 -0.315 0.273
ζ(1) - 25 0.201 -0.431 0.292 0.078 -0.193 0.193
ζ(2) - 25 0.211 -0.440 0.312 0.079 -0.192 0.203
ζ(3) - 25 0.228 -0.465 0.335 0.081 -0.196 0.210

ζ(0) t.c. 25 0.130 -0.292 0.286 0.085 -0.154 0.178

ζ(0) RTM30 25 0.158 -0.245 0.319 0.092 -0.204 0.170
ζ(1) RTM30 25 0.164 -0.245 0.337 0.094 -0.198 0.185
ζ(2) RTM30 25 0.164 -0.246 0.339 0.094 -0.197 0.186
ζ(3) RTM30 25 0.164 -0.246 0.339 0.094 -0.197 0.186

EGG97 RTM30 25 0.064 -0.090 0.208 0.056 -0.096 0.164



formation to normal heights was done first using a correction in the form ΔgB H/γ, where ΔgB is
the Bouguer anomaly at the computation point, H is the orthometric height and γ is the normal
gravity. The statistical results of the such derived differences are tabulated in Table 4 after doing
a bias fit (1 parameter) as well as a bias and tilt fit (3 parameters). The fitting is made in order to
absorb long wavelength systematic errors (Li et al., 1995). In Table 4, the term ζ (n) is used for
the complete height anomaly including the Molodensky terms up to the order n. For the
unreduced data the differences become smaller when the ζ1 terms are included, and they remain
almost the same when also the higher order terms are taken into account. For the RTM-corrected
data, both the RMS difference and the difference range (max - min) are about the same when ζ1,
ζ2 or ζ3 are included. In general, considering also results in other test areas, the RMS values
become smaller when the ζn terms (n ≥ 1) are included.

Two more comparisons are given in Table 4. The first one is between the GPS/leveling
derived height anomalies and the gravimetric height anomalies computed from gravity data
corrected by the simple terrain correction (i.e. Faye anomalies that are used in many studies as a
first order approximation to the Molodensky series). The RMS difference is slightly smaller than
the value found for the unreduced or RTM-corrected gravity data. Another comparison is made
between GPS/leveling and the height anomalies of the new European solution EGG97 (Denker
and Torge, 1997) based on RTM-corrected gravity data. This comparison gives the best results
(smallest values) both for the RMS difference and the difference range (max – min), showing the
benefit of using data in a much larger area.

5. Conclusions

Terrain reductions should be applied in the process of gravity data gridding. The gravity
reductions can remove the high frequency information present in gravity observations. These
smoothed gravity data yield significantly reduced Molodensky series terms ζn (n ≥ 1) and an
improved series convergence. From the reductions used in this study, the RTM technique gave
the smoothest results and consequently the smallest ζn (Gn) terms. From a practical point of view,
only the ζ0 and ζ1 are needed in the Alps test area. The maximum effect of the ζn terms (n ≥ 1)
is smaller than 10 cm in the mountainous Alps and less than 1 cm in low mountain ranges. Thus
the magnitude of the Molodensky terms is not very critical in connection with terrain-reduced
gravity field data. However, these terms should be included in future precise height anomaly
computations such as the European Gravimetric (Quasi) Geoid. The dependency of the
Molodensky series terms on the grid spacing also reduces considerably for terrain-reduced
gravity field data. The high resolution DTMs (e.g. 100 m grids) may cause numerical instabilities
in the Molodensky series in rough mountainous areas, especially in the computation of the Gn

terms. However, this does not affect the height anomaly prediction very much, but further inves-
tigation is necessary in this direction. The agreement of the height anomalies with corresponding
values from GPS/leveling is slightly improved when considering the Molodensky series terms ζn

(n ≥ 1).
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