
Abstract. In the frame of a project aiming to the revision of the estimation
procedures for local geoids, we have been studying the algorithms for the RTC
systematically. In this contribution, the work carried out on a small DTM test case
(5 Km × 5 Km) is presented; the work focuses especially on two topics: verifying
the effect of the surface density variations (continuous as well as discontinuous) on
the computation of the RTC term and evaluating the errors introduced in the RTC
computation by alternative approximations applied to the density variations
modeling.

1. Introduction

In the remove-restore methods for geoid computation, the Residual Terrain Correction is of
fundamental importance. This step can be thought of as the difference between two separate
terrain correction computations: the first one is performed on the real DTM, the second, on an
averaged DTM. So, despite the fact that our interest is centered on RTC, in the following we will
always refer to TC computation.

In the frame of a project aiming to revise the estimation procedures for local geoids, we are
systematically studying the algorithms for the RTC computation; our research focuses on two
aspects:
- verifying the effects of the surface density variation (continuous as well as discontinuous) on

the computation of the term RTC;
- verifying the potentiality (precise results and computational time) of a new algorithm, recently

developed to speed up the computation of RTC with a very fine DTM grid.
In this note we address our attention to the first research topic; for the other one we refer to
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Sansò et al. (1998). We only wish to recall that our new formulas are based on the analytical
splitting of TC integral into several terms: for each term a suitable approximating formula, which
minimizes estimate errors and computation time is found.

So, at present the computation is performed along two alternative approaches:
- the DTM is assumed to be representative of a set of prisms whose gravitational attraction can

be estimated by closed formulas at each computational point (Forsberg, 1994);
- the exact formulas are simplified to transform them into a sum of convolution integrals to be

estimated by FFT (Sideris, 1994).
The first approach only introduces the approximation of considering the real topography

composed of a set of discontinuous shapes, while it is a continuous surface almost everywhere
else; on the other hand, it is numerically slow when fine DTM grids are used in the computation
of TC for a large amount of gravity points (as happens in geoid computation); the second
approach is very fast, but it is based on approximations on slopes on the terrain whose effects can
be significant in rugged topography, such as in mountainous areas.

2. The problem

As is well known in planar approximation, the following formula for the gravitational
attraction for topographic masses, holds

where G is the universal gravitational constant; x is the planimetric position of the computational
point while hx is its height; ξ and ζ are the coordinates of the integration point; ρ is the terrain
density.

The first approximation on density, applied in any efficient numerical computation of the TC,
consists in assuming that the density is not a function of the depth: so the Eq. (1) becomes

Note that a straightforward representation for the density in Eq. (2) is ρ(ξ)=ρC+δρC where ρC

is a constant value; δρC(ξ) takes into account the density variation with respect to ρC. This
representation splits the right hand side of Eq. (2) into the sum of two integrals:
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Usually, the density is assumed to be a suitable constant over the whole computational
domain (typically 2.67 gr/cm3) and the term I[δρC] is neglected (i. e. δρC(ξ) is assumed to be
zero everywhere); so the TC is computed following one of the approaches (prisms integration,
FFT, new formulas) outlined in the introduction. It is worthwhile to note that the approximation
δρC = 0 is not necessary for the numerical estimate of the TC by prism integration or by FFT,
even if adopted by all the available software. On the contrary, the analytical splitting of the TC
integral (2), on which our method is based, requires the density not to vary in the integration
domain; otherwise, other corrective terms must be added taking into account the existence of
density variations.

At present, information on the surface density is available for some areas (see, for instance,
Baiocchi et al. (1998) for the Italian territory): at a detailed level, this information allows us to
know not only, the mean surface density, but also its variation as a function of planimetric
coordinates; so it is useful to verify the existence of an optimal choice for the value of ρC, namely
the one that minimizes the omission error (i. e. the error due to the hypothesis δρC = 0);
moreover, it is useful to evaluate the sensitivity of the terrain correction formula to the density
variation, in order to investigate on the opportunity of implementing some corrective terms for

g h I Ix C C( , )x = [ ] + ( )[ ]ρ δρ ξ
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Fig. 1 - Simulated DTM.
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Fig. 2 - Linear density variation, A.2 (upper) and A.3 (bottom) approximation errors.



the omission error also in our new formulas.
This is precisely our problem. Surprisingly, it will turn out that although the use of a blunt

constant density function is in many instances not sufficient, there is the possibility of using a
corrective multiplying factor which is effective and requires no more effort than the one needed
by the usual software.

3. Numerical simulation and results

To investigate the problem we have simulated a DTM on a 5x5Km2 grid, 25-meter spaced
both in North-South and East-West directions ( Fig. 1). On the same grid we have also simulated
several different density models presenting North-South variations:
1. the first one, ρL(ξ), is a linear trend from North to South, with a minimum value of 2.6 gr/cm3

in the northern area and a maximum of 2.8 gr/cm3 in the southern area;
2. the second, ρS(ξ), is a stepwise function with a constant value of 2.6 gr/cm3 in the upper half

of the grid and 2.8 gr/cm3 in the lower half;
3. the other two models  ρ200(ξ) and  ρ800(ξ) considered have constant density values in the North

and Southern areas (as ρS(ξ)) and a central transition stripe, respectively 200m and 800m
wide, in which the density follows a linear trend as for ρL(ξ).

A specific software, using the prisms method, has been implemented to calculate the terrain
correction associating each prism’s height and density. For each density model, for each node
(xi,j) of the grid, the following TC estimates have been carried out:
- A1. the "exact" TC due to the simulated DTM, namely the one obtained using, each prism’s

simulated density: g(xi,j, hx)=I [ρ(ξk,l)] in Eq. (2);
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Data Type E σσ  min Max
meters for DTM; meters for DTM; meters for DTM; meters for DTM;
mGal for others mGal for others mGal for others mGal for others

Simulated DTM 86 78 22 449

ρL(ξ) Exact TC 8.287 6.949 1.531 38.674

A.2 Errors < 0.001 0.143 -0.427 0.425

A.3 Errors < 0.001 0.005 -0.025 0.024

ρS(ξ) Exact TC 8.284 6.942 1.584 38.791

A.2 Errors -0.001 0.330 -0.945 0.984

A.3 Errors -0.001 0.120 -1.174 1.191

ρ200 (ξ) Exact TC 8.284 6.942 1.584 38.791

A.2 Errors 0.003 0.326 -0.939 0.978

A.3 Errors < 0.001 0.090 -0.830 0.978

ρ800 (ξ) Exact TC 8.285 6.942 1.584 38.633

A.2 Errors 0.002 0.291 -0.845 0.885

A.3 Errors < 0.001 0.037 -0.302 0.279

Table 1 - Comparison fo the resultes dotained by different approximation: A.1, A.2 and A.3.
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Fig. 3 - Stepwise density variation, A.2 (upper) and A.3 (bottom) approximation errors.



- A2. the approximated TC, obtained using each prism’s the mean density on the computation
domain: g(xi,j, hx)=I [ρC)] where ρC = ρ;

- A3. the approximated TC, obtained associating to each prism whose effect has to be computed,
the density corresponding to the computation node and considered as constant through all the
domain: g(xi,j, hx)=I [ρC] where ρC=ρ(xi,j);

Note that the approximation A.2 is the classical one adopted in the TC computation; the
approximation A.3 represents an alternative approach not requiring substantial modifications to
existing programs: indeed, the TC integrals involved in the two approaches, are related simply
by

due to our hypothesis that ρ(ξi,j) is constant over the domain.
For each density model, we have compared the "exact" (A.1) results with those obtained by

the two different approximations A.2 and A.3. (Figs. 2-3, Table 1).
The results obtained analyzing the ρL(ξ) density model, clearly show that the approximation

ρ(ξ)=ρ brings significant omission errors everywhere, except in the middle of the grid, where the
actual density coincides with the mean density. Otherwise, the approximation ρ(ξ)=ρ(xi,j)
improves the results everywhere.

In the case of the discontinuous density model, the approximation A.3 as compared with A.2,
greatly improves the results in a mean square sense, as can be seen from the statistics; although
it gives rise to greater omission errors in the proximity of the discontinuity line. However, as in
the ρ200(ξ) and ρ800(ξ) models, the errors furnished by solution A.3 decrease everywhere with
respect to those provided by A.2, when the transition zone "relaxes".

4. Conclusions

In the real world, the density transitions are often discontinuous; however, our present
knowledge of surface density is not so granular, and we can try to define only its large or, at best,
medium scale variations. So, by adopting approximation A.3, analyzed in this work, seems to
significantly improve the TC results in the majority of real cases, without increasing the
computation much. Anyway, when abrupt density discontinuities occur and accurate information
on them are available, a first-order modeling of their gravitational effects may be useful. 
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