
Abstract. After a call for proposals from the Italian Space Agency (ASI), for small
satellite missions a group of Italian research teams and industries, led by the
Politecnico di Milano conceived SAGE. This mission aims at determining the
gravity field of the Earth by means of high-low SST, in other words the satellite orbit
is determined by GPS, while the non-gravitational perturbations are determined by
a three-axes accelerometer. This is basically the same concept of the CHAMP
mission (Reigber et al., 1996). SAGE underwent a Phase A Study during the year
1998 (ASI, 1998). In this framework, the task of the Politecnico di Milano group
was to analyze the data by means of the spacewise approach. Besides studying new
simulations of the data expected from SAGE, the complete spacewise approach
requires the inversion of Hill's equations to be performed, to form average values on
a regular grid over the sphere and to recover the gravity field coefficients. The
simulations are required in order to: assess the accuracy of the data obtained after
the inversion of Hill's equations, introducing a realistic measurement noise;
formulate the overdetermined boundary value problem to be solved; determine
indices enabling the evaluation of the performances of the solution.

1. The concept of space accelerometry

The proposal for the SAGE  (Satellite Accelerometry by Gravity Field Exploration) mission
consisted in using a GPS receiver together with an accelerometer on a low, polar orbit satellite.
The accelerometer proofmass, positioned in the centre of mass of the satellite, is subject to a
purely gravitational acceleration g, while the centre of mass of the satellite is subject (besides the
same acceleration _g) also to all non-gravitational forces which act on the surface, whose sum is

_f. Therefore the accelerometer gives a direct measure of _f.
The GPS tracking (aided by an SLR device) allows the reconstruction (with very high relative

VOL. 40, N. 3-4, pp. 277-283; SEP.-DEC. 1999BOLLETTINO DI GEOFISICA TEORICA ED APPLICATA

Corresponding author: A. Albertella; Politecnico di Milano - DIIAR, Piazza Leonardo da Vinci 32, Milano,
Italy; phone: +39 02 23996509; fax: +39 02 23996530; e-mail: alberta@ipmtf4. topo.polinci.it

© 1999 Osservatorio Geofisico Sperimentale

New simulations for the spaceborne
gravimetry inversion

A. ALBERTELLA, F. MIGLIACCIO and F. SANSÒ

Dip. IIAR, Sez. Rilevamento, Politecnico di Milano, Italy

(Received October 5, 1998; accepted August 5, 1999)

277



278

Boll. Geof. Teor. Appl., 40, 277-283 ALBERTELLA et al.

precision between two points along an orbit arc) of the satellite trajectory _x(t). The difference

between the “observed” orbit _x(t) and the orbit ~_x(t) modelled by all available information is due

to the residual gravitational effects:

where _ξ(t) is the orbit anomaly, equivalent to a “virtual” orbit ruled by the residual gravitational

potential. From _ξ(t) it is possible, by differentiating and smoothing, to obtain observed values of

_g along the orbit, which can be integrated to give the harmonic coefficients of the field, in the

framework of an overdetermined boundary value problem.

In particular, we write the equation of the motion of the satellite as (Bassanino et al., 1992) 

considering the gravitational potential u(x) as the sum of a reference potential u0(x) and a residual

part δu(_x). In this eq., _fg(_x) represents the effects of the sun, moon and tides (which can be

modelled) and _fng(_x) represents the effect of the surface forces (mainly due to the drag, which is

measured by the accelerometer). It must be remarked that _fg and _fng can be computed along the

nominal orbit without significant errors.

The residual gravitational effects δ_g along the orbit can be obtained by inverting Hill's eqs.,

which are written here under the hypotheses that _ξ is small and that the orbit arc is circular:

The indices a,r,o respectively denote the along-track, radial and orthogonal (out of plane)

component.

This system is inadequate to produce realistic orbit ephemerides; nevertheless, it is useful

because it can certainly be used to produce simulations, to understand how well (3) can be

inverted. The general solution of Eq. (3) can be written as,
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So what we have to do is basically to invert Eqs. (4), (5), (6) for δga., δgr , δgo .
This can be done by a spacewise approach, which amounts to inverting Eqs. (4), (5), (6)

directly with a suitable stochastic inverse method; this step provides the vector (δga., δgr , δgo)
on a sphere at satellite altitude; the vector is then used to estimate the coefficients Tlm via
integration with spherical harmonics.

2. Numerical tests with the spacewise approach

In order to verify the theoretical procedure described in Section 1, it was decided to produce
simulated data to be treated in the spacewise approach. Using the EGM96 gravity model, the
three components of the residual gravity accelerations were computed at points spanning a
quarter of an orbit1, with the initial condition that latitude ϕ = 0 when t = 0 both for ascending
and for descending arcs. Other parameters of the simulation can be found in Table 1. The interval
between two subsequent points along the arc is Δt = 5 s.

To obtain the orbit anomalies according to Eq. (3), only the particular solution was used, in
fact the homogeneous part of the integral is irrelevant to our reasoning. This happens because in
the subsequent estimation procedure of δ_g (obtained by applying the Hill operator) the
contribution of the homogeneous solution Eq. (5) is equal to zero.
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1One choice is fundamental, namely to use a short arc approach, inverting half a cycle at a time so that the central point of
the arc has a maximum distance from the ends equal to a quarter of a cycle. First of all this approach shows that data could
be treated even in case of (relatively) frequent interruptions without degrading the mission. Moreover this choice is done to
be sure that the noise in ξ(t) is limited to 1÷2 cm.

(5)

(6)



By using a simple numerical integration algorithm, the three components ξpa , ξpr , ξpo were

computed.

Afterwards, from the data as represented in Fig. 1, two contributions were subtracted: one

represents the average value of the data themselves, while the other is the trend produced by the

homogeneous solution of Eq. (3). Before applying the estimation procedure, a white noise with

mean square value equal to 2 cm was added to the “observations” (cfr. Fig. 2).

Starting from the simulated observations _ξ, we now had to study the behaviour of the

estimated values of δ_g over a regular grid, covering the Earth’s surface. In order to do this, we

decided to choose a sample area with dimensions 2°×2°: over this area, data were simulated

(according to the previously described procedure) for a mission lifetime of one year,

corresponding to 15 ascending and 15 descending arcs.

The idea was to derive the signal δ_g from _ξ and observation equations Eq. (3) by applying a

collocation approach along the arc.

To optimize the collocation procedure, the empirical covariance function was estimated after

grouping the arcs in sets of five each and referring the averaged data (five by five) to the points

of the medium arc. However, the collocation estimate of the functionals, needed to invert Hill's

equations, was subsequently performed at the original points of each arc.
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Fig. 1 - An example of simulated orbit anomalies along a generic arc.

Table 1 - Parameters used for the simulation of data to be treated in the spacewise approach.

lmin 11
lmax 90
R (cm) 637813630
GM (cm

3
/s

2
) 3986004.415 10

14

W (rad/s) 7292115 10
-11

r (cm) 680813630
I 87°



The inversion of Hill's equations gave the values of the components δ ĝa , δ ĝr , δ ĝo , at all the
observation points of the sample block: by simply averaging the single components, the mean values
were obtained. These values, after undergoing a suitable rotation to an Earth-fixed reference system
(and assuming no attitude error), were referred to the center point of the block: we call them δ –ĝϑ , δ
–
ĝλ , δ –ĝr. The same quantities were also directly simulated using the EGM96 gravity model:

where:
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Fig. 2 - Simulated observations, after detrending and adding a white noise with mean square value equal to 2 cm.
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The results of the estimation procedure are summarized in Table 2.
These results quantify the noise produced for each component by the applied collocation

procedure. Therefore, three sets of noise data were synthetized, with mean square values equal
to those computed from the differences between simulated and estimated values.

3. Recovery of the gravity field coefficients

The final step consisted in computing two sets of harmonic coefficients by discretizing the
harmonic analysis formulas for the radial and horizontal components of the gravity field
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Fig. 3 - Signal-to-noise ratio and maximum estimable degree.

Table 2 - Comparison between estimated and simulated values.

DIFFERENCES δδ  –gϑϑ - δδ –
ĝϑϑ δδ  –gλλ - δδ –

ĝλλ δδ  –gr - δδ –
ĝr

Mean value (mGal) -0.049 0.066 -0.204

Mean square value (mGal) 0.589 0.317 0.470

(9)



which afterwards allowed us to derive the unique weighted estimate represented by

where

σ2
r , σ2

h being the Wiener variance densities of radial and horizontal components.
An index showing the highest estimable degree is the signal-to-noise ratio, obtained by

comparison of the curve of the degree variances given by Kaula's rule with the curve of the
degree variances of the estimated model. This gives a maximum attainable degree equal to lmax =
49, as shown in Fig. 3.

We took this result as provisory, probably due to a too rough approximation in quadrature
formulas. We say this, because a theoretical prediction of lmax from a uniform noise of 0.5 mGal
resulted in lmax =~ 62, which by the way is in agreement with the results obtained by the research
team working with SAGE simulated data, in the framework of the timewise approach (ASI,
1998).
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