
Abstract. The stress and displacement fields in an elastic medium containing a
cavity limited by an ellipsoid of revolution are computed when the medium is
subject to a generic shear parallel to the equatorial plane of the cavity, or to a ten-
sion or compression normal to the equator, when the surface of the cavity is
subject to a normal stress, and the flattening of the cavity is assumed at 0.900,
0.990, 0.999. It is found that the maximum shear stress, at the points of maxi-
mum curvature of the cavity, for a flattening of 0.990, which is a possible value
for the border of the irregular faults inside the crust of the Earth or for the dikes
of magmatic chambers, may be 130 times the shear applied to the medium and
the tilt may reach values of one minute of arc for a shear 10-5 the rigidity of the
medium. These exceedingly large maximum shear stresses at the points of maxi-
mum curvature of the cavity could be reached in dikes of magmatic chambers
when the migration of isothermal surfaces increases the temperature of the gases
by a few degrees centigrade or when it causes a phase change with dilatation.
The large maximum shear stresses at the border of the magmatic chamber are
sufficient to cause the propagation of pre-existing fractures or the generation of
new ones. 

1. Introduction 

In seismology it is often assumed that the geologic faults are geometrically described by elli-
psoids of revolution with an almost unit flattening.    

The cases when the elastic medium, where the ellipsoidal cavity is embedded, is subject to a
shear parallel to the equator of the ellipsoid, or to a tension or compression normal to it, and the

VOL. 39, N. 4, pp. 285-302; DECEMBER 1998BOLLETTINO DI GEOFISICA TEORICA ED APPLICATA

Corresponding author: R. Console; Istituto Nazionale di Geofisica, Via di Vigna Murata 605, 00143 Roma
Italy; tel. +39 06 518 604 17; fax +39 06 504 11 81; e-mail: console@ing750.ingrm.it

© 1998 Osservatorio Geofisico Sperimentale

Stress field, deformations and displacements
around a flat cavity in an elastic medium

M. CAPUTO
(1) and R. CONSOLE

(2)

(1) Physics Department, University La Sapienza, Roma, Italy
(2) Istituto Nazionale di Geofisica, Roma, Italy

(Received February 24, 1998; accepted October 15, 1998)

285



286

Boll. Geof. Teor. Appl., 39, 285-302 CAPUTO and CONSOLE

cavity is subject to normal tension or compression are of great interest in the geologic and vol-
canologic applications since they represent practical cases of magmatic chambers or faults.   

The problem is of interest also to studies of Earth’s deformations, which are often observed
in underground cavities, because the cavity modifies the strain field in the vicinity, as pointed out
by King and Bilham (1973), who also suggested that this effect could account for many of the
inconsistencies in tidal tilt observations.    

Harrison (1976) and Sato and Harrison (1990) estimated this effect and found that in fact rele-
vant corrections are needed when the observations of strain are made in cavities where, for instan-
ce, the tilt on the surface of the cavity may have great variations from place to place. In some par-
ticular cases, as we shall see here, there are points where the tilt may vanish.   

Of particular interest is the study of the stress field around the cavity because it governs the
possible generation of successive fractures.   

The problem was discussed by Neuber (1937, 1958) who gave a general theory to study the
cases in which the body is subject to several types of forces and the surface of the cavity is free
of stress. Eshelby (1957) solved the problem of the deformation of an ellipsoidal cavity in an infi-
nite isotropic medium in which the strain becomes uniform at large distances from the cavity.   

Keilis Borok (1959) applied the theory of Neuber (1937, 1958) to the limiting case when the
cavity has unity flattening. Caputo (1990) extended the solution of Neuber to cases in which the
ellipsoidal cavity is subject to normal tension or compression normal to its surface and when the
deformation is governed by stress strain relations containing a memory mechanism.   

In this note we shall apply the formulae of Caputo (1990) to compute the displacement field,
the maximum shear stress field (mss) and its direction in cases when the medium and/or the
cavity are subject to several types of forces. We find that there is a tubular region around the equa-
tor with a large stress concentration and that the concentration factor, in general, is inversely pro-
portional to the maximum radius of curvature at the equator. Possible fractures in this region and
their orientations are also discussed.   

The variation of tilt from point to point on the surface of the cavity, when the medium is
subject to shear, tension or compression, is also computed.

2. The cases discussed

In the following we make use of an ellipsoidal coordinate system u, v, w:

x = I sinh u cos v
y = I cosh u sinv cos w
z = I cosh u sin v sin w

I2 = (x2 + y2)/cosh2u + z2/sinh2u

with a first fundamental form

ds2 = h2 (du2 + dv2) + hw
2 dw2;

h2=I2 (cosh2u-sin2v); hw=I cosh u sin v

(1)

(2)



and assuming that the ellipsoidal cavity is defined by u = uo = const., with uo = 0.1, uo = 0.01,
uo = 0.001. Here I is a scaling factor, assumed as I = 1/cosh uo.  Fig. 1 shows the geometry and
orientation of the cavity in a rectangular coordinate system.   

Since the solutions for cases in which the medium is subject to shear, tension or compression
and the surface of the cavity is subject to a normal stress are linear, the problem of the compu-
tation of the strain and displacement fields, due to a linear combination of the two different types
of stresses applied to the medium and normal forces applied to the surface of the cavity, is rea-
dily solved.   

The corresponding mss and angles should obviously be computed combining the displace-
ment, deformation or stress fields resulting from the applied forces linearly.   

The formulae for the computation of the diagonal components σu, σv and σw, and of the non
diagonal terms τuv, τuw and τvw of the stress tensor and the components U, V and W of the displa-
cement when the medium is subject to a shear p1 parallel to the x axis and the surface of the
cavity is free of stress are given in the Appendix A. These formulae are reproduced to correct a
few of Caputo misprints (1990).   

The ellipsoidal cavities have symmetry of revolution around the x axis. The flattening f and
the radius of curvature ρ of the ellipse at the intersection of the ellipsoids with the x,y plane, in
the point of maximum curvature of the ellipse (u = uo , v = 90°), are respectively

f = 1 − tanh uo , ρ = I sinh2 uo / cosh uo.   

For the cases considered here we have
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Fig. 1 - The geometry of the problem introduced in this study. The surfaces u = const. are ellipsoids of revolution with
equation x2/I 2 sinh2 u + (y2 + z2)/I 2 cosh u = 1; the surfaces v = const. are hyperboloids of revolution with equation -
x2/I 2 cos v + (y2 + z2 )/I2 sin v = 1; the surfaces w = const. are planes through the x axis with equation z = y tan w. The
figure illustrates the section of these surfaces with the x, y plane. OXu = I sinh u, OYu = I cosh u, OYv = I sin u. 



uo=0.1, f=0.900, ρ=9.98 10-3 I

uo=0.01, f=0.990, ρ=1.00 10-3 I 

uo=0.001, f=0.999, ρ=1.00 10-3 I

2.1. The case when a shear is applied to the medium

The results of the computations of the displacement field for uo = 0.01, which of the three

cases considered is the most significant, assuming first p1 = μ (where μ is the rigidity of the

medium) in rather large grids of the x, y plane in the neighbourhood of the point x = z = 0, y = I

are presented in Fig. 2; they are not indicative of particular features. Using the log |log y| as the
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Fig. 2 - Displacement vectors in the first quadrant of the x, y section of the elastic medium containing the ellipsoidal
cavity with unit semimajor axis along the y axis, uo = 0.01 and p1 = μ, that is the medium is subject to a shear parallel
to the x and y axes and nominally equal to the rigidity of the medium. The segments represent the displacement in arbi-
trary units.

(3)



parameter represented in the ordinates in this and in some similar figures which follow allows a
magnification of the scale around the value y = I, where the most critical changes of both displa-
cement and stress occur.   

The displacements in the elastic medium subject to shear stress p1 modifies the shape of the
cavity, so that the stress could be estimated measuring the tilt at some points of its surface. On
the section of the x, y plane, for the case uo = 0.01, the tilt has a relative minimum in the point
v = 0 (Fig. 3). Its value there, for p1 = μ 10-3, is -0.037° . It increases with y, until it crosses zero
at v = 84.5° (y = 0.995 I). Then it keeps increasing more and more rapidly until it reaches the
absolute maximum of 3.15° at y = I.   

The results of the computation of the mss for the case uo = 0.01, also limited to the same
region of the x, y plane, are shown in Fig. 4 where the directions of the planes of the mss are  also
given.   

The values of mss resulting from the values of p1 different to μ are obtained from the values
of Fig. 4 by multiplying the values of Fig. 4 by the new value of p1 in units of μ. Thus, mss is
invariant with respect to p1.    

Concerning Fig. 4, it is seen that in a very limited region at the sides of the points of maxi-
mum curvature of the ellipse at the intersection of the ellipsoid with the x, y plane, there is a large
gradient of the mss, resulting from a large gradient of the component τuv of the stress tensor,
which reaches values of about thirty times larger than the applied shear stress.   

In Figs. 5 and 6 we may see the mss in the plane x = 0. Along the equatorial line of the cavity
v = 90°, u = uo, for 0 < w < 90°, there is a cylindrical region with a normal section with a dia-
meter of (4·10-3) I where the mss reaches values larger than 10 p1.    

Assuming that p1 is sufficiently small at the beginning and slowly increases, it will eventually
reach a value sufficient to form a new fracture in this region of large stress concentration.

The orientation of the planes of the maximum mss in the limited region around the point
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Fig. 3 - Tilt of the surface of the ellipsoidal cavity in the x, y plane (u = uo = 0.01) versus v. The dashed line represents
the tilt produced by a shear parallel to the x and y axes nominally equal to 10-3 times the rigidity of the medium. The
solid line represents the tilt produced by a tension p1 parallel to the x axis nominally equal to 10-3 times the rigidity of
the medium.



x = z = 0, y = I are perpendicular to the x,y plane; their traces in this plane are parallel to the x
and y axes respectively and indicate that new fractures may be generated with this orientation.   

The formation of the new fracture will alter the mss field of Figs. 4, 5 and 6 and release part
of it.   

Neuber (1958) states that the maximum of the mss, in the case of an applied pure shear,
occurs at the surface of the cavity at the point x = 0, y = 0, z = I and is given by the formula        

S =   4 p1 α/π (α + 2) sinh uo

where α = 2 (1 − 1/m) and 1/m is the Poisson ratio which is assumed here at 0.25.   
S, for uo = 0.01, is 55 p1 and is shown in Figs. 5 and 6.    
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Fig. 4 - The maximum shear stress (mss) for the same values of the parameters and ellipsoidal section of Fig. 1. The
numbers give the value of the mss in units of p1. Two principal directions are in the x, y plane, in each point one of
them is given by the segment and the mss plane is at 45° angle with the x, y plane.

(4)



The planes of the mss in this point are at angles of 45° with the y = 0 plane and parallel to
the z axis; the new fracture would most probably begin in that plane and propagate along the
equator.   

The region described above, when w approaches zero, approaching the point x = y = 0, z = I,
becomes narrower while the value of mss approaches the value 55 p1 given by (4).   

In cases with uo = 0.1 and uo = 0.001 we have verified the existence of a similar cylindrical
region of concentration of stress along the equator; the maximum mss of the region changes
according to formula (7), it is 6.5 p1 when uo = 0.1 and 550 p1 when uo = 0.001.    

For all values of uo considered, the region always has the shape of a cylinder running along
the equator of the cavity, reducing its diameter slightly when approaching the point x = y = 0,
z = I (u = uo , v = 90°, w = 0) where it reaches the maximum concentration of mss given by (4).

For w decreasing along v = 90°, the mss decreases and for w < 6° it is negligible. However,
for w < 6° the cylindrical region does not include the equator of the cavity, but runs parallel to
it, and the maximum of the mss in it is always larger than 50% of the maximum mss in the cylin-
drical region given by (4).    

For w < 6° the maximum mss is reached at a distance of I uo
2 from the equator and the dia-

meter of the region there, is of the same order.   
The mss in this cylindrical region, for uo < 0.1 and for distances of the order of I uo

2, falls at
a rate 0.5 S/log d where S is given by formula (4) as function of uo and d is the distance from the
equator; at larger distances the rate is significantly and increasingly smaller.   

Among the effects of p there is also a change of the shape of the cavity Σ; this in turn redu-
ces its volume and causes a negative pressure on Σ; however the change in volume and the con-
sequent pressure are negligible. The same cannot be said of the normal to Σ; to estimate it we
consider a shear parallel to the x, y plane nominally equal to 10-3 μ in the case Σ has a flattening
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Fig. 5 - The values of the mss in the section x = 0 along the line v = μ/2 for μ/2 > w > 0 and uo = 0.01. The ordinate
shows the value of the mss in units of p, the abscissas is the distance from the surface of the ellipsoidal cavity in radial
direction.



of 0.99; at distances smaller than 0.017 I from the x,y plane this shear causes a tilt of Σ larger
than one degree as shown in Fig. 3.

2.2. The case of tension and compression in the medium with normal forces applied to the sur-
face of the cavity

In the case when the medium is subject to a tension or compression p normal to the equator
of the cavity and this is subject to a normal tension or compression k the formulae are presented
in Appendix B.   

It is to be noted first, that when the cavity is spherical (Caputo, 1987) and the medium is
subject to pure tension or compression, the mss occurs at the surface of the cavity. We shall see
here, that by removing the spherical symmetry of the geometry of the cavity and the boundary
conditions, the distribution of the mss changes and takes interesting forms.   

In the case of this section, the stresses and displacements obviously have a revolution sym-
metry and it will be sufficient to compute them in the plane x, y.    

In this case we will consider the cavity with uo = 0.01 subject to a compression k = − μ (k < 0)
normal to its surface and the medium subject to a tension p = - k normal to its equatorial plane.

In Fig. 7 the displacement field caused by this set of forces is shown in the x, y plane and in
the neighbourhood of the point x = z = 0, y = I.    

As to the shape of the cavity, also in this case, the tension p in the medium produces modi-
fications that can be observed through the tilt at the surface of the cavity. In the x, y plane, the
tilt is null both in point v = 0 and in point v = 90° (Fig. 3). For uo = 0.01, the maximum is rea-
ched on the point Q at v = 89.4° (y = 0.99996 I), where its value is 1.3° for p = μ · 10-3.   
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Fig. 6 - Values of the mss as in Figure 3 but here the distance from the plane x = 0 is in the abscissas. 



This implies that a tiltmeter in the top or bottom points of the cavity Σ would record no varia-

tion of the direction of the normal, while a tiltmeter located in Q would indicate a large change

of this direction relative to the other points of Σ. The cavity Σ then functions as a magnifier and

the best position to locate a tiltmeter to observe p, would be Q.   

Fig. 8 shows the mss caused by the same forces and in the same region. It is seen that mss

reaches its maximum value 128 p in the points of the circle y2 + z2 = I2 of the plane x = 0.   

Around the equatorial plane there is a cylindrical region which includes the equator of the

cavity whose normal section has a radius of I uo/10 where the mss is larger than 10 p.   

The planes of mss in this region, in each point of the equator, are tangent to the equator and

form an angle π/4 with the x axis. The values of the mss in this region are presented in Fig. 9.
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Fig. 7 - Displacements caused by a tension p, nominally equal to the rigidity of the medium and parallel to the x axis,
and a pressure k = -p applied to the surface of the ellipsoidal cavity with uo = 0.01. The segments represent the displa-
cement in arbitrary units. Due to the symmetry of revolution around the x axis the displacements are the same on all
sections with planes through the x axis.



The computation for the cases when uo = 0.1 and uo = 0.001 indicates that in the range
0.001 < uo < 0.1 the maximum mss is proportional to uo and 13 p and 1280 p respectively for the
extreme values.   

Due to the symmetry of revolution, in the case of this paragraph, there is a cylindrical region
around the equator with radius uo for uo = 0.01 , radius 0.8 uo for uo = 0.01 and radius 0.008 uo

for uo = 0.001, where the mss is larger than 0.1 p/uo.    
A fracture beginning at any point of weakness will therefore propagate along the equator of
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Fig. 8 - Values of the mss in section x = 0 for the same values as the parameters in Fig. 5. The numbers give the value
of the mss in units of p. One of the principal directions is normal to the x, y plane, another is given by the segments;
in those above the dotted line the direction of the segment and the normal to the x,y plane give the plane of the mss
which is at π/4 angle with the x, y plane and at π/2 angle with the segment; in those below the dotted line, the segments
and the principal direction normal to it in the x, y plane give the mss plane which is at π/2 angle with the x, y plane and
at π/4 angle with the segment. Due to the symmetry of revolution around the x axis, the values and directions are the
same on all sections with planes through the x axis. 



the cavity while the dislocations will be at an angle of 45° with the equatorial plane and normal
to the equator.   

At the end of this process, along the equator, there will be a new fracture “en echelon” with
the equator. The width of the fracture will obviously depend on the stress drop and the type of
rock.   

It is to be noted that when p = ± μ, k = 0 or p = 0, k = ± μ , the results will change in the
signs, and the components of the stress tensor will be half the values obtained when p = -k = μ.  

The considerations in this section are of particular interest when studying the variation of
pressure inside a sealed magmatic chamber due to a temperature induced volume change or to
the formation of gases.   

In fact, considering a dike of a magmatic chamber with a flattening of 0.99, assuming p = 5
bar we find that the mss reaches a value of 650 bar in the region of maximum curvature. This
stress could be sufficient to cause new fractures and to extend the size of the dike.   

Migration of isothermal surfaces may cause phase changes and possibly dilatations in the
layers through which they go (Marechal, 1975). If the phase change occurs in magma sealed in
a magmatic chamber, the dilatation would then cause pressure on the walls of the magmatic
chamber.

The migration of the isothermal may also cause an increase of the pressure of the gases con-
tained in the magma, which in turn would also cause an increase of the pressure on the walls of
the magmatic chamber.   

Finally, the migration of isothermal surfaces may just cause dilatations in the magmas and in
the surrounding rocks without phase changes but with a different coefficient of thermal expan-
sion of the magma and of the rocks which in turn would generate a pressure change on the wall
of the magma chamber.   
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Fig. 9 - Values of the mss in section z = 0 as function of the distance from point x = z = 0, y = I with u0 = 0.01 and p
= -k = μ. The solid line gives the values of the mss as function of the distance from point x = z = 0, y = I and along the
y axis, the dashed line gives the values of the mss as function of the distance from the same point along the line y = I,
z = 0.



An example is in the Phlaegrean Fields in Italy where in the interval between 1970-1972 a
change of 10°C (Palumbo, 1978) of the soil was recorded and in the interval between June 1970
- September 1972 a dilatation of 10-4 was accumulated (Caputo, 1979).   

A thermal volume expansion coefficient of the magma and of the surrounding rocks of about
2·10-5 °C-1 would cause the observed surface dilatation.   

A difference in the thermal volume expansion coefficients, between the magma and the sur-
rounding rocks, of about 3·10-6 °C-1 would cause an increase of 5 bar in the pressure of the
magma which would cause the supposed mss of 650 bar on the dikes of the magmatic chamber.

2.3. Effect of the rheology

As regards the rheology of the medium, we note that it plays an important role in the con-
centration of stress in cavities where the medium is subject to stress. In general, when the surfa-
ce of the cavity is free of stress and the body is subject to tension (pressure) normal to the equa-
tor of the cavity, then the maximum  shear stress at the equator of the cavity decreases (increa-
ses) with time (Caputo, 1990).   

In the case of an ellipsoidal magmatic chamber imbedded in a crust free of stress, a pressu-
re normal to the surface of the cavity generates the largest maximum shear stress at the equator
and the stress decreases in time. However, if the pressure increases at a rate faster than the relaxa-
tion caused by the rheology, then the stress at the equator increases in time. If a pressure is acting
in the medium normal to the surface of the cavity and is lower than the pressure acting on its sur-
face, then the stress at the equator increases in time.  These considerations are valid also for geo-
logic faults containing gases or fluid at high pressure.   

The discussion of the effects of the rheology on the stress field at the surface of the cavity
may have a relevant impact on the stress corrosion theory, which may apply to the equator of the
cavity itself. In this case, however, one may have contrasting effects. In fact, the increase of the
radius of curvature ρ at the equator of the cavity causes a decrease of the local maximum shear
stress but, it also favours the circulation of the fluid causing the corrosion. The decrease of the
radius of curvature ρ at the equator increases the maximum shear stress but, on the other hand,
it reduces the local circulation of fluid.

3. Conclusions

We have estimated the displacement and stress fields in a medium containing an ellipsoidal
cavity Σ, with symmetry of revolution, in cases when the medium is subject to tension or com-
pression normal to the equatorial plane of Σ or to a shear parallel to it, and assuming also that Σ
is subject to a normal stress.    

As already known, Σ may significantly alter both fields, especially when its flattening is
large. However, the maximum shear stress and tilts in Σ, as function of the curvature at the equa-
tor of Σ where the curvature is maximum, has not been estimated. It is found here that, on the
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surface of Σ both fields are extremely large at the points where the curvature of Σ is large.

When the flattening is of 0.99, a value which may occur in natural faults and underground

cavities, in the region of maximum curvature, the maximum shear stress caused by a stress paral-

lel to the equator of Σ, may be 130 times the applied shear stress. The tilt, for a shear 10-5 times

the rigidity of the medium, which is a reasonable value, may be one minute of arc.    

These stress fields and tilts are relevant when studying the propagation of fractures in faults

or cavities of the crust of the Earth and the deformations observed in underground cavities.

Appendix 1

Components of the displacement and of the stress tensor around an ellipsoidal cavity in a

medium  subject to a shear stress p1 parallel to the x axis:
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where μ is the rigidity, α = 2(1 - 1/m), and 1/m is the Poisson ratio which is assumed here at 0.25.
I is assumed as I = 1/cosh uo in order to imply ellipsoids with unit semimajor axis along the y
axis.

Appendix 2

Components of the displacement and of the stress tensor around an ellipsoidal cavity in a
medium  subject to a tension or compression p normal to the equator of the cavity and this is
subject to a normal tension or compression k:
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where the symbols have the same meaning as in Appendix 1.
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