
Abstract. We study wave propagation in an elastic layer under finite deformations.
The variation of the propagating wave speeds with respect to the parameter of fini-
te deformation is highlighted. We give the characteristic curves for the linear cylin-
drical wave and the nonlinear coupled wave: the diagrams giving their shape are
constructed, depending on the mode of initial excitation.

1. Introduction

Cylindrical objects are essential materials (components) in the oil prospection industry and
other areas of applied geophysics. They are often used as research media (Carcione and Seriani,
1994 and Kaduchak et al., 1996 ); and so it is pertinent, for instance, to have a qualitative know-
ledge of the waves propagating in them. Furthermore, these and other related media of interest,
like the earths crust, wich is the location of mineral deposits, including hydrocarbon  reservoirs,
are frequently modelled as layered/anisotropic media (Carcione and Cavallini, 1993; Honarvar
and Sinclar, 1996; Kohler et al., 1996). What is more, just as the porous media modelling
(Carcione and Quiroga-Goode, 1996) of the oil reservoir and sedimentary environment is gaining
impetus these days so also is the need to examine finite deformation (or nonlinear) effects
(Lyakhovsky et al., 1997 and Barclay, 1998) on physical phenomena in them and their properties.
Although, a good number of these media under consideration are not only nonlinear in mechani-
cal behaviour but also inelastic or time dependent (Carcione and Quiroga-Goode, 1996; Crampin
and Zatsepin, 1997; Zatsepin and Crampin, 1997; Carcione, 1997), nevertheless elastic model-
ling (Kaduchak et al., 1996; Kohler et al., 1996; Lyakhovsky et al., 1997) is the first window
through which analytical information is exploited. This is so, in part, to avoid a totally compli-
cated, if not clumsy, situation from the onset.

Justifiably, in almost all aspects of geophysical endeavour, and elsewhere, the behaviour of
the P-waves and S-waves, in one form or an other, is of sustained interest (Vavryčuk and
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Yomogida, 1996; Carcione, 1997; Castro et al., 1997; Igel et al., 1997 and Barclay, 1998). They are
basic waves and are continually used to investigate phenomena and deduce analogies (Carcione and
Cavallini, 1995). Hence the need to investigate their behaviour when finite deformation is taken into
consideration. This, amongst other things, may influence the quality of signals between sources and
targets in geophysical experiments, such as in mineral exploration where petrophysical property
changes that induce acoustic property changes in hydrocarbon reservoirs are detected by reflection
seismic experiments.

In this work the effect of finite deformations on elastic waves is studied in a layered medium. 
The main difficulty with problems in finite deformations is getting a workable energy function

or a constitutive law (Green and Adkins, 1960 and Lurie, 1980). But once this is obtained, by wha-
tever means, the difficulty associated with nonlinearity of the consequent boundary value problem
can then be tackled with available mathematical methods. From both the practical and theoretical
points of view the consideration of finite deformations is of interest, since amongst other  things, it
enables some effects, often supressed through the small (or infinitesimal) deformation approach, to
be detected. Knowledge of some of these effects at times can be of immense value, not only in the
fields of seismology, and oil and other related mineral exploiting industries, but also in water resour-
ces and others.  An important point here is the fact that there exists a nonlinear elastic  wave, even in
an infinite homogeneous isotropic medium, to the extent that the longitudinal and shear waves are
coupled (Ibitoye and Akinola, 1993).   

Here, we invoke the mathematical theory of characteristics, wich indicates that under appropria-
te conditions an hyperbolic partial differential equation can be decomposed into ordinary differential
equations along curves known as characteristics. Based on this, without having directly solved any
boundary value problem as it were (Courant and Hilbert, 1962; Achenbach, 1973 and Whitham,
1974), we attempt to give the expression for the wave speeds, and the characteristics for the linear
longitudinal wave and the nonlinear coupled wave, the later being an effect of finite deformation.

2. Propagating waves for infinitesimal deformation

We recall the classical theory for infinitesimal (small) deformation. The motion of particles in an
homogeneous isotropic elastic medium is given by the classical Lame’s equation:

By Helmholtz’s theorem on the decompostion of a vector into a scalar potential and a vector
potential for the displacement vector u and for the body force vector f

and since ∇ × (∇ ϕ)=0, ∇ ⋅ (∇ × ψ ) = 0, for any scalar ϕ and any vector ψ , we obtain from Eq. (1), 
�
a

�

 �u = ∇ϕ + ∇ ×
�

ψ ;  
�
f = ∇Φ + ∇ ×

�
Ψ,

��

 (λ + 2μ )∇(∇ ⋅ �
u) − μ (∇ × ∇ × �

u) + ρo

�
f = ρo

∂ 2

∂t2

�
u. (1)

(2)



provided ∇ ⋅ ψ = 0, the two uncoupled motion equations

with the longitudinal wave (or dilatational wave or p-wave) speed and the shear wave (or tran-
sverse wave or s-wave) speed respectively

λ are μ the Lame’s elastic constants and ρo is the material density.
We see that the scalar potential ϕ, such that u = ∇ϕ , is associated with the longitudinal wave,

while the vector potential ψ , such that  u = ∇ × ψ , is associated with the shear wave. We also
note that Eq. (3) is a scalar relation, while Eq. (4) is vectorial, from which we can obtain the sca-
lar relations equivalent to Eq. (3). In fact, consider u = ∇ × ψ and note that ∇ × ∇ × ψ = ∇ (∇
⋅ ψ ) - ∇2 ψ .  Then noting that (∇2 ψ )i = (∇ × ∇ × ψ )i = εijk∂j (∇ × ψ )k = εijk∂juk = εijk∂j (εkmn∂mψn)
we obtain

where εijk is the Levi-Civita anti-symmetric rotation tensor, and ∂i is the partial derivative in the
pertinent argument along the direction of the i-axis.

Now, in rectangular coordinates (x1, x2, x3), in the case of a plane wave, u (x, t) Eq. (6) redu-
ces to ∇2 ψ = ∂1

2 ψ2  j + ∂1
2 ψ3 k . Substituting this in Eq. (4), we obtain the usual two similar

wave equations, the horizontally polarized shear wave or SH-wave and the vertically polarized
shear wave or SV-wave:

Likewise, in cylindrical coordinates (r, θ, z), ψ = (ψr , ψθ , ψz) and for plane waves  u =  u (r, t)
Eq. (6) again gives a similar pair of wave equations as in Eq. (7), for the rotary shear motion and
axial shear motion respectively:

Thus, under the small deformation assumption, the two propagating waves, the P-wave and
S-wave (SH or SV), are linear and uncoupled.

cs(
∂ 2ψ r

∂r2 + 1
r

 
∂ψ r

∂r
− ψ r

r2 ) = ∂ 2ψ r

∂t2 ;  cs(
∂ 2ψ θ

∂r2 + 1
r

 
∂ψ θ

∂r
− ψ θ

r2 ) = ∂ 2ψ θ

∂t2 .

 
�
a
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cs
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2ψ 2 = ∂ 2ψ 2

∂t2 ;  cs
2∂1

2ψ3 = ∂ 2ψ3

∂t2 .

���

 (∇2 �
ψ )i = ε ijk ε kmn∂ j∂mψ n ;  i, j,k, l,m,n = 1,2,3,

�����
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���
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ρo
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,

 cS
2∇2 �

ψ +
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Ψ
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= ∂ 2
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∂t2 ,
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2∇2ϕ + Φ

ρo

= ∂ 2ϕ
∂t2 ,

�
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(3)

(4)

(5)

(6)

(7)

(8)



3. Wave equations for finite deformation

3.1. Problem setting

Let Ω be a subset of a 3-dimensional Euclidean space E3 (i.e. Ω ⊂ E3). Consider Ω as an infi-
nite composite medium consisting of concentric periodic cylinders Ωm ; Ω1 ⊂ Ω2 ⊂ Ω3 ⊂ ⋅⋅⋅ ⊂ Ω,
where m is any natural number.

We seek the plane finite deformation of Ω from an initial configuration Ω0 onto a current con-
figuration Ω by the action, say, of an excitation on the interior surface (i.e. of the innermost cylin-
der) radius r0 , in the form (Sujunshkaliev, 1980)

where r is the radial coordinate, t is the time, α is any initial constant angle and θ is the angular
displacement.

The position vectors of every particle in the initial (Ωo) and the current (Ω) configurations are
given respectively by:

where er , eα , k are the orthogonal covariant local basis vectors associated with the cylindrical
coordinates (r, α, z) in Ωi, and  eR, eφ, k are the corresponding local basis vectors associated with
the cylindrical coordinates (R, φ, z) in Ωc, as a result of the deformation r → R .

3.2. Geometry of deformation

The gradient tensor of the position vector R in Ω (R ) taking in the initial configuration  Ωo

(r ) is

Consider the polar decomposition of the gradient tensor into the symmetric stretch tensor Ũ, and the
orthogonal (rotation) tensor that is supportive of deformations Õ such that R = Ũ ⋅ Õ. We
note that R ⋅ R T = Ũ 2 , and in view of Eqs. (9), (10) and (11) we obtain

 
Õ = 1

D
[ 1

r
(rf )' (

�
er

�
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�
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�
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�
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�
eR) + D

�
k

�
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�
∇° 

�
a∇°

 
�
a∇°

 

°

∇
�
R = �

r i ∂
∂qi

�
R = �

r i  
�
Ri = f '

�
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�
eR + fθ '

�
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�
eφ + f

r

�
eα

�
eφ +

�
k

�
k .

�
��

��
���

���

 �r = r
�
er + z

�
k ,

�
R = f (r, t)

�
eR + z

�
k ,

f = f (r,t),  φ (r,t) = α + θ (r,t),
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(9)

(10)

(11)

(12)

∇°



Here and elsewhere, for any quantities ϕ (r, t) and ψ (r, t); ϕ’≡ ∂ϕ
∂r , ϕ⋅≡ ∂ϕ

∂t , and ϕ ⋅ ψand ϕ ⋅ ⋅ ψ indi-
cate the dot (or inner or scalar) product and double dot product (i.e. two consecutive scalar ope-
rations) of the two respectively. r i =  

∂r
∂qi , ri is the contravariant vector to ri , and ri rj = δij, where

δij is the Kronecker delta (unit) tensor, i, j = 1, 2, 3.
The acceleration of the body in the current position, from Eqs. (9) and (10), is 

where the second terms in the first and second brackets correspond to the centrifugal and the
Coriolis accelerations, which may be of some degree of interest in problems in the earth sciences. 

3.3. Energy function and motion equation

The deformation Eq. (9) results in a planar problem. Then, by the theory of invariants, this
medium will possess 3 invariants corresponding to 2 eigenvectors and a normal vector that cha-
racterizes the direction of transversal-isotropy. Therefore, the deformation energy will be a func-
tion of 3 invariants of the geometry of deformations, and correspondingly will be characterized
by 3 effective moduli (Pobedria, 1984):

where c is the unit vector that characterizes the direction of anisotropy. We note that should the
medium become non-heterogeneous for whatever reasons, then automatically the energy as in Eq.
(15) reduces to its known equivalent for homogeneous (isotropic) body, and same is true for the
effective moduli λ3, λ2, λ1, while λo vanishes:

where λ and μ are the Lame’s constants, and for any finite function ϕ (ξ , t) ∈ Ω × [0, T), and 〈ϕ〉 
�
a

λ3 = λ2 = μ ,  λ1 = λ ,  λo = 0,

�

λ2 = μ ,  λ1 = λ +
〈 λ
(λ + 2μ )

〉2

〈 1
(λ + 2μ )

〉
− 〈 λ2

(λ + 2μ )
〉,  λ3 = 1

1
μ

,  λo = λo(λ2,λ3),

 So = �
c ⋅Ũ2 ⋅ �

c,  S1 = Ẽ ⋅ ⋅(Ũ − Ẽ) ≡ I1(Ũ − Ẽ),  S2 = I1(Ũ − Ẽ)2;

W = λ 2S2 + 1
2

λ1S1
2 + λ oSo ,

 �̇̇R = ( ˙̇f − fθ̇ 2 )
�
eR + ( f ˙̇θ + 2 ḟθ̇ )

�
eφ ,

������

D = [{ 1
r

(rf )' ]2 + ( fθ' ) 2}1/2
.
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(13)

(14)

(15)

(16)

(17)

(18)



denotes its geometric average over Ω with the volume ⎜Ω⏐:

We note that the medium in consideration is heterogeneous. If we endow Ω with the proper-
ties of an appropriate functional space, say the Sobolev’s Space, we can then understand any ope-
rations on it to be in the generalized (or distributional) sense. 

Now, assume hyperelasticity for Ω and take the Frechet derivative of W in Eq. (15) with
respect to the geometry °∇ R . This gives us its energy conjugate stress tensor - Piola’s stress P̃:

This is the constitutive law for the medium. Then, the motion equation is

where ρh = 〈ρo〉 is the effective density of the medium in the initial configuration.
The component form of Eq. (21), using Eqs. (11), (12), (14) and (20), gives the following

wave equations:

where 

and

3.2. Effect of anisotropy and method of solution

If the medium Ω is homogeneous, then by Eq. (18) we obtain from Eqs. (24) and (26) that

cL
2 ≡ g

ρh

,  g ≡ λo + λ1 + 2λ2,  κ ≡ 2(λ1 + λ2 )
λo + λ1 + 2λ2

.

χ = 1 − κ
D

,

q = gχ 2 ,

cL
2 ∂

∂r
(χ 2 f

∂θ
∂r

) + χ 2

r
 

∂
∂r

(rf )
∂θ
∂r

⎡

⎣
⎢

⎤

⎦
⎥ = f

∂ 2θ
∂t2 + 2

∂f

∂t

∂θ
∂t

,

cL
2 ∂

∂r

χ 2

r
 

∂
∂r

rf( )⎡

⎣
⎢

⎤

⎦
⎥ − χ 2 f (

∂θ
∂r

)2⎧
⎨
⎩

⎫
⎬
⎭

+ λo

ρh

 
f

r2 = ∂ 2 f

∂t2 − f (
∂θ
∂t

)2,

 
∇

°
⋅ P̃ = ρh

∂ 2
�
R

∂t2 ,

 P̃ ≡ ∂W

∂ ∇
° �

R
= 2λ 2 ∇

° �
R + (λ1S1 − 2λ )Õ + 2λ o

�
c
�
c ⋅ ∇

° �
R.

�

 ϕ = 1
Ω

Ω
∫ ϕ d

�
ξ .
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(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

∇°
∇° ∇°

∇°



q → qo, g →go, cL→c 0

L , ρh→ρo, χ→χo, κ→κo and 

where ν, ν ∈ (-1, 1/2) is the Poisson’s ratio. 

In Eq. (22) we recognize λo__
ρh

f
r2
__  as the anisotropic term and therefore λo__

ρο
≡ β as the parame-

ter of anisotropy. Then f (r, t) is the function carrying the direct effect of anisotropy.  
Now we put the following parameters in their dimensionless form:

and generate u in βo:

Then inserting Eq. (29) in Eq. (22) and Eq. (23), we obtain the recurrence system of equa-
tions with respect to powers of the anisotropic parameter βo:

where,

The first system in Eq. (30), corresponding to n=0, being the coefficient in zero power of βo,
does not contain the anisotropic term any longer:

Fn−1
k = Fn−1

k (un ); Fn−1
k = 0  if either  n − 1 < 0  or  k = 2  and  Fn−1

1 = un−1

x2 ;

Xn
1 ≡ ∂

∂x
(

χ 2

x
 

∂
∂x

(xun )) − χ 2un(
∂θ
∂x

)2,  Tn
1 ≡ ∂ 2un

∂τ 2 − un(
∂θ
∂τ

)2;

Xn
2 ≡ ∂

∂x
(χ 2un

∂θ
∂x

) + χ 2

x
 

∂
∂x

(xun )
∂θ
∂x

,  Tn
2 ≡ un

∂ 2θ
∂τ 2 + 2

∂un

∂τ
 

∂θ
∂τ

.

βo
n(Xn

k − Tn
k + Fn−1

k ) = 0,  k = 1,2
n=0

∞
∑

u(x, τ ) = βo
nun (x, τ ).

n = 0

∞
∑

βo ≡ β
cL

2 ,  u ≡ f

ro

,  x ≡ r

ro

,  τ ≡ cL

ro

t,

qo = goχo,  cL
o ≡ go

ρo

,  go = λ + 2μ ,  κ o = 2(λ + μ )
λ + 2μ

= 1
1 − ν

,
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(27)

(28)

(29)

(30)



These expressions coincide with the structure in the case of a homogeneous medium. Even,
in the subsequent systems of Eq. (30), when n>0, the anisotropic term now features as a “ficti-
tious force”, being known from the solution of the previous system.

In this way, the problem associated with anisotropy of the medium is completely exposed;
and the issues of dispersion and or filteration can then be studied by taking into account the recur-
rence structure of Eq. (30). We are now left with the problem of finite deformation, with respect
to the possible types of waves that propagate in the medium. 

4. The effect of finite deformation on wave speed

4.1. Method of characteristics

We associate with u (x, τ) longitudinal waves propagating with the velocity cL given by Eq.
(26), by analogy with waves for infinitesimal small deformations Eq. (5), while we associate with
θ (x, τ) shear waves. From system Eq. (31) it is clear that these waves are coupled. To invoke the
characteristic method we rewrite that system in a more suitable form:

where

and

v ≡ uo,
1
x

∂
∂x

(xv) ≡ D  cos ω , v
∂θ
∂x

≡ D  sin ω ,

∂ 2ν
∂τ 2 = a11

∂ 2ν
∂x2 + a12

∂ 2θ
∂x2 + a1,

∂ 2θ
∂τ 2 = a21

∂ 2ν
∂x2 + a22

∂ 2θ
∂x2 + a2.

∂
∂x

χ 2

x
 

∂
∂x

xuo( )⎡

⎣
⎢

⎤

⎦
⎥ − χ 2uo

∂θ
∂x

⎛
⎝⎜

⎞
⎠⎟

2

= ∂ 2uo

∂τ 2 − uo
∂θ
∂τ

⎛
⎝⎜

⎞
⎠⎟

2

,

∂
∂x

χ 2uo
∂θ
∂x

⎛
⎝⎜

⎞
⎠⎟ + χ 2

x
 

∂
∂x

xuo( ) ∂θ
∂x

= uo
∂ 2θ
∂τ 2 + 2

∂uo

∂τ
 

∂θ
∂τ

.
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(31)

(32)
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Now Eq. (32) constitutes a system of quasi-linear differential equations of order 2, with
respect to the independent variables x and τ, for the waves ν and θ. Then the method of charac-
teristics is applicable. Let 

and consider the variation of the derivatives of ν and θ along some curve C, with a constant slope
c, in the plane π (x, τ):

Using the condition for hyperbolicity of Eq. (32) (Whitham, 1974), in view of Eqs. (35) and (37),
we obtain 4 real values for c:

4.2. Variation of wave speed and parameter of finite deformation

From Eq. (37) we obtain four characteristics: the first pair c = ± 1 giving the linear forward

c = ±1 and  c = ± χ.

dx

dτ
= c(v,θ ).

vr = ∂v

∂τ
,  vx = ∂v

∂x
,  θr = ∂θ

∂τ
,  θx = ∂θ

∂x
;  

∂vr
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= ∂vx

∂τ
,  

∂θr

∂x
= ∂θx

∂τ
,
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D
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D

sin2 ω ,
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D2

1
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∂x
(xv)⎡

⎣⎢
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2D
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2D

 
sin 2ω

v
,
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∂θ
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κ
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D
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⎛
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⎞
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2

− χ 2v
∂θ
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⎛
⎝⎜

⎞
⎠⎟

2
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∂
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v

x
⎛
⎝

⎞
⎠ + a12

1
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∂v
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,
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(34)

(35)

(36)

(37)



and backward wave, while the second pair c = ± χ corresponds to the nonlinear Eq. (25) forward
and backward wave. In fact,

This last expression gives the speed of a longitudinal wave for a layered composite medium
and is similar to the case of an homogeneous medium or a small deformation as in Eq. (5). Now
in the case of the other pair, we have

Thus, the ‘speed’ χ is nonlinear but dependent on D, which we refer to as the parameter of
finite deformations. In the initial configuration f = r, θ = 0, and D = 2, so that χ becomes a con-

stant linear speed χ = , and Eq. (38) reduces to

which again coincides with the speed of a transverse cylindrical wave in the case of small defor-

mations for a layered composite, and by Eq. (18) reduces to cs = , as in Eq. (5) for a homoge-

neous body. On the basis of Eqs. (26) and  (27) the variation of  χ with respect to D is shown in
Fig. 1. The continuous curves give the speed variation for ν = 1/2 and ν = --1, respectively. All other
materials lie in between.The Poisson’s material (ν = 1/4) is given by the broken curve; on the χ-

μ
ρo

dr = ±csdt,   cs = λo + λ2

ρh

,

λ o + λ 2

λ o + λ1 + 2λ 2

dx = ± χdτ,   i.e.   dx = ± (1 − κ
D

)dτ .

dx = ±dτ   or   dr = ±cLdt;   cL = λo + λ1 + 2λ2

ρh

.
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Fig. 1 - Variation of the nonlinear speed χ with respect to the parameter of finite deformation D.

(38)



axis, a = 1/√−
3 and b = √−

3/2.

5. The characteristics curves

The linear characteristics are any straight lines inclined to the temporal axis at an angle π/4,
in the plane π (x, τ). The main task is establishing the nonlinear ones. First of all, we consider the
conditions germane to solving the system (32): for second order equations in 2 variables, we need
8 conditions. We thus consider the following conditions, obtained from physical reasoning.
(i) conditions at initial time τ = 0:

(ii) conditions on the internal wall x = 1:

and 
(iii) conditions on the characteristics:

where χi =χ (τ)⎜τ=0 = χ (0), and ϕ (τ) is an internal excitation.

θx (1,0) = − 1
χi

 
dϕ
dτ

  on  dx = χ(τ )dτ,

vx (1,0) = 1,   on   x − τ = 1,   

v(1, τ ) = 1,   θ (1, τ ) = ϕ(τ );  

v(x,0) = x,   vτ (x,0) = 0,   θ (x,0) = 0,   θτ (x,0) = 0;  
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Fig. 2a - Forward characteristics x (τ) for the linear longitudinal wave (continuous line) and the nonlinear coupled wave
(continuous curve) which in the limit tends to the linear shear wave (broken line).

(39)

(40)

(41)

(42)



5.1. Initial propagating speed for the nonlinear wave

Now crucial to obtaining the characteristics is the need to know the initial propagation speed
χi. On the basis of conditions from Eq. (39) to Eq. (42) and using appropriate jump conditions on  

ν and θ, we observe that D (0) ≡ Di = , and we obtain a bi-cubic equation with respect

to χi:

where 

We solve Eq. (43) as a cubic equation with respect to χ i
2. The pertinent root, which is real and

reduces to the speed value χs when particles are not excited,

is

where γ = 13
_ (α2 + 2α + 1 + 3β) and ψ is just any constant angle. On the basis of Eq. (45) and

χi
2 = 2 − α

3
− 2

γ
3

cos(π / 3 + ψ ),

χi α =0
2 = χs

2 = 1 − κ
2 α =0

,

α ≡ (1 / 2∂ϕi )
2,  β = (κ / 2)2.

χi
6 − (2 − α )χi

4 + (1 − β − 2α )χi
2 + α = 0,

4 + θ x
2( )
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Fig. 2b - Dependence of the nonlinear speed χ on the dimensionless time τ, in the case of a nonzero initial impulse,
corresponding to α ≠ 0 or ∂ρϕi ≠ 0. The horizontal broken line corresponds to the constant speed for the linear shear
wave.

(43)

(44)

(45)

(46)



Eq. (46) we can now construct the characteristics.

5.2. Construction of the nonlinear characteristic

Assume that at some distance from the source, particles no longer experience excitation and
as such are at rest. Then by Eq. (45) the characteristic curve at time τ = 0 is

At other times, depending on the initial excitation, we can then construct x (τ) for all τ. 
In fact, consider any function 

depending on the initial excitation, as contained in Eq. (44), then we have

We identify two situations corresponding to α ≠ 0 and α = 0. In those cases we choose respecti-
vely

and consider the behaviour of x (0), χ (τ), and .

In both cases we obtain oscillatory curves as given in Figs. 2a and 3a, respectively. The

d2x

dτ 2 = dχ
dτ

η(τ ) = pτe
− τ

τ1 ;   η(τ ) = poτ 2e
− 2τ

τ1 ; p > 0,  p0 > 0, τ1 > 0,

x(τ ) = 1 = χsτ + η(τ ).

η(τ ); η(τ ) ≥ 0,  η(τ ) < 1 ∀τ

x(τ ) = 1 + χsτ.
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Fig. 3a - The characteristics: the inclined continuous and broken lines correspond to the linear longitudinal and shear
waves, respectively, while the curve is for the nonlinear wave when the angular velocity (or impulse) of the initial exci-
tation is zero, and in the limit tends to the linear shear wave a = τ1 (1 - 1/√−2) and b = τ1 (1 + 1/√−2).

(47)

(48)

(49)



expression for the curves in the first case is 

and the minimum point of χ occurs at τ = τ2 = 2τ1 (see Fig. 2b). Likewise, the expression for the
characteristic curves in  the second case is

where

and the maximum  and minimum values occur respectively at points a and b in Fig. 3b, i.e. χmax =
χ (a) = χ (1-1/√−

2)τ, χmin = χ (b) = χ (1+1/√−
2).

6. Conclusions

We have used one of the advantages inherent in the method of characteristics, such that even
without having explicitly solved boundary value problems, we obtained the pattern of propagation
for the cylindrical wave, when finite deformations are accommodated. The obtained characteristics
show that locally, the propagating waves interact: one is linear, while the other is nonlinear. What
is more, in the limit, the nonlinear wave asymptotically tends to the linear shear wave, already
known in the literature. These may have important use in encoding signals between sources and tar-
gets in oil exploration and other geophysical  applications. 

Although a layered elastic medium is considered here, when the assumption of
anisotropy/homogeneity is removed, the construction is such that all obtained relations, in view of

po = (χmax − χmin ) e−2τ1 ( 2 − 1)e 2 + ([{ 2 + 1)e− 2 ]}−1

,

x(τ ) = 1 + χsτ + poτ 2e
− 2 τ

τ1 ,

x(τ ) = 1 + χsτ  1 + χi

χs

− 1
⎛
⎝⎜

⎞
⎠⎟

e
− τ

τ1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,
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Fig. 3b - Dependence of the nonlinear speed χ on τ, in the case of zero initial impulse a = τ1 (1 - 1/√−2), while b = τ1
(1 + 1/√−2).

(50)

(51)



Eqs. (18) and (27), reduce to the case of an isotropic/homogeneous medium and as such all the
observations made, with respect to finite deformation effects (Lurie, 1980), hold true. 
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