
Abstract. We consider an SH-type wave, emitted by a source in a half-space, inci-
dent on a plane semi-infinite crack. The incident wave is obtained as a solution of
an inhomogeneous wave equation. The diffracted field is found using the Wiener-
Hopf technique. The far-field is calculated using asymptotic approximations.

1. Introduction

The problem of diffraction of elastic waves has attracted considerable attention during the
last two decades due to its importance in material sciences, seismology and earthquake engi-
neering. In this context Kazi (1975), Asghar and Zaman (1986, 1987) and Zaman and Bokhari
(1995) have obtained the diffracted field in the case of a time-harmonic incident wave on plane
discontinuities using the Wiener-Hopf technique. This technique was first used by Wiener and
Hopf (1931) to solve a singular integral equation. Jones (1952) subsequently presented a modi-
fication with which certain mixed boundary value problems could be solved using this proce-
dure without having to obtain an integral equation formulation. In various applications such as
acoustic, electromagnetic and ocean waves, Williams (1956), Rawlins (1974) and Hurd (1954)
among others, have considered diffraction problems using this method. A good account of this
method and many of its applications are presented in Noble (1958). We shall present here a
brief outline of the method for the interested reader.

The present paper deals with the diffraction of a horizontally polarized shear (SH-) wave
from a plane semi-infinite crack. The problem considered differs from our earlier studies men-
tioned above in the respect that, in the present case, the incident field is produced by the pre-
sence of a source emitting a time-harmonic SH-type disturbance. Moreover, the far-field
approximation is also given at the end.
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2. Wiener-Hopf technique

Wiener and Hopf (1931) presented an excellent technique for solving certain singular inte-
gral equations. It was later shown by Copson (1946) that mixed boundary value problems arising
from diffraction by a semi-infinite plane could be formulated in terms of integral equations and
then solved by the Wiener-Hopf technique. The integral equation was transformed into a func-
tional equation in the complex plane using integral transforms and then solved using analytic
continuation argument. In the modified method of Jones (1952), the Fourier transform is direc-
tly applied to the partial differential equation without having to obtain an integral equation for-
mulation first. In either of the two approaches, the Fourier or Laplace transforms can be used to
reduce the problem to that of solving the functional equation 

where the subscripts ± refer to functions that are regular in the upper half ζ-plane Im (ζ) > τ-
(lower half-plane Im (ζ) < τ +). In Eq. (1), the unknown functions are F+(ζ) and S_(ζ), while G(ζ)
and R+(ζ) are known. The first crucial step in solving this equation is to factorize the known func-
tion G(ζ) as G(ζ) = G+(ζ)G_(ζ), where G+(ζ) is regular in the upper half plane Im (ζ) > τ_, while
G_(ζ) is regular in Im (ζ) < τ +. It is further required that G+(ζ) and G_(ζ) are free of zeros in the
respective half-planes of their regularity. Eq. (1) can then be written as 

We now have the left-hand side of this equation regular in the upper half-plane, and S_ (ζ) / G_ (ζ)
on the right-hand side regular in the lower half-plane. However, R+ (ζ) / G_ (ζ) still is not regular in
either of the two half-planes. For this purpose we use the additive decomposition

where M±(ζ) are regular in the upper (lower) half-plane. Thus we now have 

Since the left-hand side of Eq. (4) now contains functions that are regular in the upper half-
plane, while the right-hand side is regular in the lower half-plane, with the two half-planes over-
lapping in the strip τ _ < Im (ζ) < τ + , we deduce by analytic continuation that both sides equal an
entire function P(ζ). This entire function can be determined by its behaviour as |ζ|→∞. In most
problems, we have P(ζ)→0 as |ζ|→∞. In such a case we find the two unknown functions as

F+ ζ( ) =
M+ ζ( )
G+ ζ( ) ,

S− ζ( ) = − M− ζ( )G− ζ( ).

F+ ζ( )G+ ζ( ) − M+ ζ( ) = M− ζ( ) +
S− ζ( )
G− ζ( ) , τ− < Imζ < τ+ .

R+ ζ( )
G− ζ( ) = M+ ζ( ) + M− ζ( ),

F+ ζ( )G+ ζ( ) =
R+ ζ( )
G− ζ( ) +

S− ζ( )
G− ζ( ) , τ− < Im ζ( ) < τ+ .

F+ ζ( )G ζ( ) = R+ ζ( ) + S− ζ( ), τ0 < Imζ < τ+ , (1)

(2)

(3)

(4)

(5)



3. Formulation of the problem

A time-harmonic line source emitting SH-type waves is assumed to be situated at P(x0, y0) in
a homogeneous elastic half-space with free surface y = _ h (Fig. 1). The x-axis is chosen along
the semi-infinite plane crack (x > 0). The rigidity, density and shear slowness of the medium are
denoted by µ, ρ, and ST respectively.

We write the total displacement field in _ ∞ < x < ∞ as 

where winc accounts for the inhomogeneous source term, and w1, w2 are the diffracted waves in
the two regions separated by the crack. The equation of motion satisfied by winc is 

where k2 = S2
T ω

2, ST is the slowness of SH-wave given by and ω  is the angular frequency.
The initial conditions are given by 

The diffracted wave satisfies the homogeneous equation obtained from Eq. (7) by putting the
right-hand side zero. The boundary conditions are:

(a) At x > 0

due to the presence of the crack.

y = 0− ,
∂w1

∂y

y = 0+ ,
∂w2

∂y

⎫

⎬
⎪⎪

⎭
⎪
⎪

= − ∂winc

∂y
,

winc (x, y,0) = ∂winc (x, y,0)
∂t

= 0.

∂ 2winc

∂x2 +∂
2winc

∂y2 − ST
2   

∂ 2winc

∂t2 = δ (x − x0 )δ (y − y0 ),

wtot (x, y, t) =
winc (x, y, t) + w1(x, y, t),  − h < y < 0,

winc (x, y, t) + w2 (x, y, t),  y > 0,

⎧
⎨
⎪

⎩⎪
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(6)

(7)

(8)

(9a)

Fig. 1 - The study model.

ρ / µ



(b) At x < 0, y = 0

and 

due to continuity of displacement and stress.
(c) At y = − h, − ∞< x <∞

In addition, appropriate edge conditions are imposed for uniqueness of the solution. These
conditions specify behaviour of the stress near the edge x = 0, and are discussed in Achenbach
(1973).

4. Solution of the incident wave

We define the Fourier transform in x as

with the inversion given by

Eq. (7) transforms into 

where γ2 = ζ2 _ k2, and k is assumed to have a positive imaginary part.
The solution of Eq. (12), together with appropriate boundary conditions for the half-space y

> 0 (vanishing tractions at the free surface), is given by Noble (1958) as 

The inversion formula (11) gives 

winc (x, y) = 1
4i

H0
1 (k R1) + H0

1 (k R2 ){ },

w*inc (ζ , y) = −
eiζx0 e−γ y− y0 + e−γ y + y0{ }

2γ 2π
.

d2 w*inc (ζ , y)
dy2 − γ 2 w*inc (ζ , y) = 1

2π
eiζx0 δ (y − y0 ),

w (x, y) = 1
2π

w* (ζ , y)e− iζx dζ ,
−∞

∞

∫

w* (ζ , y) = 1
2π

w (x, y)eiζx dx,
−∞

∞

∫

∂w1

∂y
= 0.

∂w1

∂y
= ∂w2

∂y
,

w1 = w2 ,
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(9b)

(9c)

(9d)

(10)

(11)

(12)

(13)

(14)



where R2
1,2 = (x − x0)

2 + (y ± y0 )2, where the lower sign is taken for the first subscript of R2, and
H1

0(kR) is the Hankel function of the first kind representing an outgoing wave at infinity. When
the source is removed to infinity, the following asymptotic form of the Hankel function gives the
far-field behavior:

5. Determination of the diffracted field

We use the Wiener-Hopf procedure to find the solution of the mixed boundary value problem
satisfied by the diffracted field.

In order to do so, we decompose w*(ζ, y) given by (5) as 

where ζ = α + iτ. It may be noted that if |w| < A exp (τ− x) as x→∞, and |w| < B exp(τ+  x) as
x→− ∞, then w*

+ (ζ, y) is analytic for τ > τ_, and w*
- (ζ, y) is analytic for τ < τ +. Thus w* (ζ, y)

is analytic in the common strip τ _ < τ < τ+. Here we may choose τ± = ±Im(k) (Noble, 1958).
The Fourier transform of the equation of motion satisfied by w1 and w2 can be shown to have

solutions 

and 

where denotes differentiation with respect to y.
From Eqs. (9a) and (9b) it can be seen that we need to calculate only w*

1 (ζ, 0) in order to
determine w*

1 (ζ,, y) and w*
2 (ζ,, y). We therefore need one Wiener-Hopf equation only. This can

be obtained from Eqs. (16) and (17), and boundary conditions (9a) and (9b) as 

In order to solve this equation, we use the factorization given by Mittra and Lee (1971) to
write 

exp(−γ h)sinh(γ h)
γ h

= G+ (ζ )G− (ζ ),

w1+
*' + (ζ ,0) + w1−

*' (ζ ,0) = γ exp(−γ h)sinh(γ h) w1+
* (ζ ,0) − w2+

* (ζ ,0){ }.

'
'

w2
* (ζ , y) = −exp(−γ y)

γ
w2

*' (ζ ,0),

w1
* (ζ , y) = cosh γ (y + h )

γ sinh(γ h)
w1

*' (ζ ,0),

w* (ζ , y) = w+
* (ζ , y) + w−

* (ζ , y)

= 1
2π

w (x, y)eiζx dx +
0

∞
∫ w (x, y)eiζx dx

−∞

0
∫{ },

H0
1 (k R) ≈ 2

π k R
⎛
⎝⎜

⎞
⎠⎟

1/ 2

e
i (kR− π

4
)
.
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(15)

(16)

(18)

(19)

(17)

(20)



where G_(ζ) = G+(− ζ) and 

where C is Euler's constant.
We notice that G±(ζ) have no zeros. Eq. (19) can, therefore, be written as 

The additive decomposition theorem (Noble, 1958) can now be utilized to write 

where the subscript ± denotes that functions are analytic in the upper (or lower) half-plane,
respectively.

The explicit expressions for K±(ζ) are given by the factorization theorem given by Noble
(1958) as 

This integral can easily be evaluated using residue calculus.
We can now write Eq. (18) as 

Eq. (25) is now in a form such that the left-hand side is regular in the lower half-plane, while
the right-hand side in the upper half-plane. As both sides are equal through Eq. (21) in the com-
mon strip of analyticity, they define an entire function. As discussed in Achenach (1973), this
entire function can be shown to be zero, considering the asymptotic behavior of w*

1- (ζ, 0) and
K_(ζ) as |ζ|→∞.

Thus we can determine w*
1 (ζ, 0) as 

where K_(ζ) is given by (20), while G_(ζ) is known through (21). As noted before, w*
2 (ζ, 0) can

be determined using the value of w*
1 (ζ, 0).'

'

w1−
*' (ζ ,0) = − K− (ζ )G− (ζ ),

'

'

K− (ζ ) + w1−
*' (ζ ,0)
G− (ζ )

= − K+ (ζ ) + γ 2 hG+ (ζ ) w1+
* (ζ ,0) − w2+

* (ζ ,0){ }.

K± ζ( ) = ± 1
2πi

−w*' inc g,0( )
G− g( ) g− z( )−∞

+∞

∫ dg.

w1+
*' (ζ ,0)
G− (ζ )

= K+ (ζ ) + K− (ζ ),

w1+
*' (ζ ,0)
G− (ζ )

+ w1−
*' (ζ ,0)
G− (ζ )

= γ 2 hG+ (ζ ) w1+
* (ζ ,0) − w2+

* (ζ ,0){ }.

G± (ζ ) = sin kh
kh

⎛
⎝

⎞
⎠

1/ 2

exp
±ihζ
π

1 − C + ln
2π
kh

⎛
⎝

⎞
⎠ + iπ

2
⎡
⎣⎢

⎤
⎦⎥

exp
iγ  h
π

− ln ± ζ − γ
π

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

1 ± ζ
iγnh

⎛
⎝⎜

⎞
⎠⎟n =1

∞

∏ exp
±iζh
nπ

⎛
⎝⎜

⎞
⎠⎟

,
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(21)

(22)

(23)

(24)

(25)

(26)



6. The transmitted waves

We determine the transmitted waves in the two regions separated by the crack using Eqs.
(17), (18) and (26), and applying the inverse Fourier transform (11).

a) The region − h ! y ! 0; x > 0.

where w* inc(ζ, 0) is known through (13), while G_(ζ) and K_(ζ) are given by (21) and (24),
respectively.

In order to evaluate this integral, we close the contour in the lower half-plane, where G_(ζ)
and K_(ζ) are analytic. The only poles of the integrand are the zeros of sinh γ h, apart from the
branch point at γ = 0, which makes an insignificant contribution in the layer (Lapwood, 1949).
Now sinh (γ h) = 0 implies γ = inπ /h, n = 0, 1, 2, ..., which leads to ζ2 = k2 − n2 π2 / h2 = − p2

n

(say). We, therefore, calculate residues at ζ = − ipn. The integral in Eq. (27) can thus be evalua-
ted as 

b) The region y " 0; x > 0.
The displacement field in this region can be obtained using Eqs. (13), (18) and (26), and the

inversion formula (11) as 

In order to evaluate this integral, we again close the contour in the lower half-plane and cal-
culate the branch point contribution. The first term gives rise to a wave of exactly the same form
as the incident wave, but with opposite sign, and hence cancels with it. The second term can be
evaluated by deforming the contour into a hyperbola by putting ζ = − k cos(θ + iτ). We estimate
the integral for large kr asymptotically and use the asymptotic formula for the Hankel function
to write the far-field solution as 

where x = r cos θ and y = r sinθ.

7. Discussion of the results

The waves propagating in the layer − h ! y ! 0, x > 0 satisfy k2 − ζ2 = n2 π2 / h2, which is the

w2 (x, y) = − 1
π kγ

K− (−k cosθ )G− (−k cosθ )exp i kr − π
4

⎛
⎝

⎞
⎠

⎧
⎨
⎩

⎫
⎬
⎭
,

w2 x, y( ) = 1
2π

exp −γ y( )
γ

w*' inc

ζ ,0( ) + K _ ζ( )G_ ζ( ){ }−∞

∞

∫ e− iζxdζ .

w1 (x, y) = − i 2π cosh γ n (y + h)

γ n
d

dζ
sinh(γ h)[ ]ζ =−ipn

∑ w*' inc

(ipn ,0) + K− (−ipn )G− − ipn )⎡
⎣⎢

⎤
⎦⎥
e− pnx .

'

w1 (x, y) = − 1
2π

cosh γ (y + h)
γ sin (γ h)

w *' inc

(ζ ,0) + K− (ζ )G− (ζ ){ }−∞

∞

∫ e− iζx dζ ,
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(27)

(28)

(29)

(30)



dispersion equation for SH-waves travelling in a strip of uniform thickness h, with free upper and
lower surfaces at y = − h and y = 0, respectively. This agrees with the physical situation of the
problem, as a layer of uniform thickness is indeed formed due to the presence of crack at y = 0
for x > 0. The waves in the lower stratum, y " 0, x > 0, are body waves that emanate from the
crack acting as a line source, and have the desired behaviour as r→∞, because k has been assu-
med to have a positive imaginary part.
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