
Abstract. A higher-order nonlinear term is introduced into the Korteweg-de Vries
(KDV) equation during the process of its formulation from the original shallow-
water wave  equations. The resultant effects on the fundamental solutions of the
equation are described. It is suggested that this theory can satisfactorily model the
evolution of swell propagating on beaches with constant depth distribution.

1. Introduction

The evolution of the solitary and other fairly long periodic waveforms on shallow-water of
moderate depths is adequately described by the solution of the KDV equation (Zabusky and
Galvin, 1971; Segur, 1973; Whitham, 1973). The phenomena has been extensively discussed
from variuous aspects in recent years (Whitham, 1973). In this topic, nonlinearity and dispersion
dominate, whilst dissipation is usually neglected (Okeke, 1991). Further, the local depth h0 of the
the undisturbed water layer is assumed to be greater than the wave amplitude η0, defining the
peak. Analytically, this is to ensure that the binomial expansion arising from the formulation of
the KDV equation converges. Consequently, for oceanographic considerations, this assumption
is realistic, since the finite amplitude non-breaking shallow-water satisfy the inequality η0 < 0.8
h0.

Furthermore, the KDV equation combines the first-order correction in η0/h0 and (h0/L0)
2.

Here, L0 is the horizontal wavelength scale, with 2π/L0 as the peak wavenumber. Also, higher-
order corrections have been extensively discussed (Zabusky and Galvin, 1971; Segur, 1973).
However, as a follow up, this model introduces a nonlinear term of order (η0/h0)

2 into the KDV
equation in the process of its formulation from the shallow-water wave equations. The effects of
this term in the solutions are investigated. An attempt is also made to utilise the model in descri-
bing some aspects of finite amplitude shallow-water waves.
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2. The wave equations for shallow water

The model is such that the x-axis is normal to the shoreline, the y-axis being the perpendi-
cular coordinate. The horizontal bottom of the water layer takes the form y = h0, h0 being con-
stant; t > 0 represents the time. The elevation and depression of the free surface are defined by
y = η(x,t). By assuming that the flow velocity u(x,t) is uniform with depth, the usual shallow-
water equations are (Stoker, 1957; Okeke, 1991)

(g being the accelaration due to gravity). Following Nettel (1992), u(x,t) takes the form
(Whitham, 1973; Nettel, 1992)

Using Eq. (3) to eliminate u(x,t) in Eqs. (1) or (2), then

Incorporating the dispersion effect of order (h0/L0)
2 into Eq. (4), then

where

and

Eq. (5) is a form of the KDV equation with an additional higher-order term involving (η/h0)
2.

Development of Eq. (5) in the form of uniform wave trains is obtained by means of a change of
variables. Thus,

The first integration of Eq. (5) gives
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Eq. (6) can be further integrated to obtain

X0 and X1 are arbitrary constants. They are determined if h0 is suitably chosen such that

where η=a0 ; a0 being a typical wave amplitude at the seaward edge of the shallow water. Thus,

and

Now, Eq. (7) takes the standard form

where

2.1. The associated energy equation

Eq. (7) may be written in the form

With η0 = 0.774 h0 , u0/c0 - 1 ~ 1/3  then Eq. (9) simplifies to
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In Eqs. (9) and (10), over dot represents differentiation with respect to time.
Multiply Eq. (10) by the constant density ρ and carry out vertical averaging of the terms in

the equation to obtain

X12 is a constant that includes the contribution from the mean sea surface elevation 3η−ρX0 .
In nonlinear wave theory, η− is not necessarily zero. Again, η. is the speed of the free surface ele-
vation η(x,t); hence η. 2 is proportional to the kinetic energy associated with the free surface oscil-
lations. Further, η−2    is the mean square displacement of the sea surface elevation and thus, pro-
portional to the mean potential energy of the elevation. Thus, Eq. (11) models the energy equa-
tion for the shallow-water nonlinear waves when the water depth h0 is constant.

The term in η4− suggests the effect of the additional term of order (η/h0)
2 in Eq. (5). With η0

= 0.774 h0 for wave with finite amplitude, the contribution of this term to the total energy of the
wave process as expressed by Eq. (11) is estimated to be 8%. This is quite significant percenta-
ge which can effect any calculation. Again, the negative sign before the term seems to suggest
also its diminishing effect on the potential energy of the system.

3. Solitary wave solution of Eq. (8)

In this case, it is usually assumed that the oscillations vanish at infinity (Whitham, 1973); i.e.,
a0 = 0; thus 2.8 assumes a simple form:

The solution to Eq. (12) is now expressed in terms of elementary functions. In this case, take

where b + d = α1 and bd=α2 from which

Separating variables in Eq. (12) and integrating, then,
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As  θ →0, sech (R1/2) → 1  and η →α2/b. Again, as  θ →∞, sech (R1/2) →0 and η →0. Thus,
even though (13) does not possess the functional form of the familiar solution of the KDV equa-
tion (Zabusky and Galvin, 1971; Segur, 1973), it still models a solitary wave with amplitude α2/b.
Hence, solution (13) suggests the effect of an additional higher-order term in Eq. (5) (Fig. 1).

In geophysical applications, consider the non-breaking finite amplitude solitary wave with
peak height η0. Usually, 0.5 h0 ≤ η0 ≤ 0.8 h0 for local depth h0. Consequently, if η0 = 0.5 h0, we
have

and b = 7.10 h0 or b = 0.9 h0. If η0 = 0.8 h0 then μ0/c0 = 1.342, α2 = 5.47 h0 and b = 7.2 h0 or
b = 0.8 h0. This suggests that Eq. (13) can model a non-breaking solitary wave  (Kinsman, 1965;
Okeke, 1991), since A0, α2 and b are always non-negative (Fig. 1).

4. Periodic wave solution

In this consideration, the solution of Eq. (7) does not need to vanish at the seaward end of
the shallow water. Thus, the complete equation will now be utilised. Firstly, let η(θ)=h0ξ and
ξ=ξ(θ). In terms of ξ, Eq. (7) takes the form

Also, transform from ξ(θ)  to Ζ(θ)  using
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Fig. 1 - A solitary wave form.

(14)



where λ and  μ are constants chosen such that coefficients of the terms involving Z and Z3  vani-
sh separately when Eq. (15) is substituted into Eq. (14). In this consideration, the vanishing of
the coefficient of the terms in Z determines μ in terms of λ. That is,

where H0 = h0 μ and  H=h0 λ. Again, using Eq. (16) and the property that the coefficient of the
term in Z3 vanishes, H satisfies the cubic equation

Thus, Eqs. (16) and (17) imply that μ = 0, and that Z satisfies the standard equation

where

and

where

Eq. (18) has a solution

It thus follows that Eq. (5) has closed solution given by
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The function Sn is the Jacobian elliptic function of the first kind. Thus, Eq. (20) represents
the Sn oscillation with period T; k is the modulus of the elliptic function with γ as the modular
angle, where k = sin(γ). T is defined by T = 4K(k2)/ω. Here, K(k2)  is the complete Jacobian ellip-
tic function of the first kind given by K(k2) = π /2  2F1(1/2, 1/2; 1; k2), i.e., in terms of the  hyper-
geometric function 2F1(1/2, 1/2; 1; k2). Using the properties of the function K(k2) = (π /2) (1+k2/4)
+ O(k4), consequently, T = (2π /ω) (1 + k2/4) + O(k4). It should be mentioned that the appearan-
ce of the number 2 in the denominator of Eq. (15) and subsequently in Eq. (20) is the outcome
of a series of numerical experiments arising from this model.

5. Discussions

In the calculations that follow, length scales are in metres and time scales in seconds. Thus,
consider a wave with unit amplitude at the seaward edge of the shallow water, propagating into
the beach without breaking. Take h0 = 2.5 m as the constant depth of the shallow water, corre-
sponding to a wave speed of 4.95 ms-1. With these data, the cubic Eq. (17) is solved numerical-
ly, and with error (in its roots) of order 10-9, the general variation of H(η0/h0) is shown in Table
1. The corresponding variations in k and θ are also shown. In all, 0 < k < 1 and the numerical
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Fig. 2 - A periodic wave form.

Table 1 - The variations in wave parameters as functions of relative wave height.

η/h0 H (m)       k        θo T (s)   L (m)

0.8   4.497   0.5301818   32.018   6.284   41.734

0.7   4.474   0.5287870   31.923   6.074   39.203

0.6   4.423   0.5257480   31.719   5.930   37.130

0.5   4.376   0.5229540   31.531   5.793   35.118

0.4   4.331   0.5202930   31.352   5.660   33.148



values of k are sufficiently small to give rapid convergence of the hypergeometric series asso-
ciated with the function T. Thus, Eq. (20) models a periodic oscillation with period T. However,
it is not cnoidal in form, as is usually associated with the solution of the KDV equation (Nettel,
1992). It is further noted that the solution (20) is not very symmetric about the line θ-axis, as
clearly shown in Fig. 2. These are the interesting effects of the additional term of O [η0/h0]

2 in
the original formulation of the simple model.

Finally, in the range of the periods usually associated with non-breaking finite amplitude
waves, Table 1 suggests that this work models (to a large extent) the evolution of a low level
swell. If η0 ∈ [0.6 h0, 0.8 h0], the modelling is quite satisfactory, but if η0 ∈ [0.4 h0, 0.6 h0], the
succsess is about 67%. Nevertheless, further adjustments in the numerical values of h0 and a0 by
a realistic factor of one and a half suggest an interesting model of high level swell with period
of 10 seconds and more.

References

Kinsman B.; 1965: Wind waves. Prentice-Hall, Inc, pp. 9-24.

Lamb H.; 1945: Hydrodynamics. Cambridge University Press, 425 pp.

Nettel S.; 1992: Wave Physics. Springer-Verlag, pp. 181-186.

Okeke E. O.; 1991: The stability of nonlinear water waves. Africana Mathematika, 4, 161-167.

Segur H.; 1973: Korteweg de-Vries equation and water waves. J. Fluid Mech., 59, 720-736.

Stoker J.; 1957: Water waves. Interscience Publishers, Inc., 567 pp.

Whitham G. B.; 1973: Linear and Nonlinear Waves. John Wiley and Sons, pp. 460-470.

Zabusky N. J. and Galvin C. J.; 1971: Shallow-Water Waves, the KDV Equation and Solitons. J. Fluid Mech., 47, 811-
824.

254

Boll. Geof. Teor. Appl., 38, 3-4, 247-254 OKEKE


