
Abstract. The stability of the scale factor of the LaCoste Romberg gravimeters
LCR201 and LCR265 has been studied by analyzing repeated gravity measure-
ments covering a period of five years in a “relative” calibration line. Further consi-
deration of the previously used adjustment algorithm showed that it is not necessary
to eliminate the additional parameters before the minimization of the trace of the
cofactor matrix in order to overcome the singularity problem, since in our model
these parameters do not depend on the reference level. Extended reliability tests
showed that the network is satisfactory for calibration of the instruments. The
results obtained show an almost linear change in the scale factor for both gravime-
ters, corresponding to 3x10-5 per year for the LCR201 and 1x10-5 per year for the
LCR265. No clear trend was observed for the drift behaviour of the instruments.

1. Introduction

Our LCR201 and LCR265 gravimeters have been used for the last twenty-two years over a
wide field of applications such as geophysical prospecting, high accuracy control networks for
geodynamic purposes, monitoring of earth tides etc. (Makris et al., 1973; Torge et al., 1976,
1981; Mavridis et al., 1980a, 1980b; Arabelos et al., 1982; Arabelos, 1991). In the case of con-
trol networks for geodynamic purposes, the goal is the detection of gravity changes with the
time, of the order of some μGal/year. Taking into account that the magnitude of the measured
gravity differences varies from a few mGal to some hundred mGal, the importance of accurate
knowledge of the linear calibration coefficient, the so-called “scale factor’’ of the gravimeters, is
obvious. In Greece eight absolute sites were established in 1993 (Baker et al., 1995). Before
1993 no absolute gravity stations were included in the Greek national gravimetric network that
could help the calibration of the gravimeters. In order to overcome the lack of an “absolute’’ cali-
bration line, a “relative’’ calibration line was established in 1975 in north Greece.
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Our control network consists of 6 stations, starting from Thessaloniki and ending at mount
Olympus. The sites of these stations were selected in geologically stable places. In Table 1 the
coordinates, the height and the adjusted relative gravity values of the stations are listed. The gra-
vity differences between successive stations cover a wide part of the range of measured differen-
ces in the country. The horizontal distance between stations No. 1 and No. 6 is about 85 km, and
the corresponding latitude difference is only 35’. The large difference of 500 mGal between the
stations 1 and 6 is due to change in gravity with the 1887 m height difference between these two
stations. The disadvantages of this relative calibration line are the rapid changes in temperature
and atmospheric pressure during the calibration measurements.

In the following sections, the adjustment model will be discussed in connection with the relia-
bility of the data, and the results of the adjustment will be presented. Finally, conclusions will be
drawn on the stability of the scale factors, and the drift of the instruments in the specific calibra-
tion network.

2. The adjustment model

The relation between observations and unknowns is given by the observation equation for a
measured gravity difference between stations i and j (e.g., Torge et al., 1976; Arabelos, 1985;
Torge, 1989):

where
gj

’-gi
’ is the measured gravity difference after the tidal correction,

gi
o is an approximation of the actual value gi of the gravity value at station i,

xi is the corresponding correction,
d is the linear drift factor,
tj-ti is the time difference between the measurements at the stations i and j,
Y=1+y is the linear scale factor of the gravimeter, and
vi j is the residual which represents the unavoidable observation error.
It is easy to recognize that, with the present form of eq. (1), either the gravimeter readings

(converted to values in mGal) or the gravity differences could be used as observations.

g' j − g' i( ) − gj
0 − gj

0( ) = xi + x j − g' j − g' i( ) y + t j − ti( ) d + vij ,
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Table 1 - Relative gravity values of the control gravity network. Unit is mGal.

Coordinates Height Relative gravity value
Station Latitude Longitude (m) (mGal)

1 40° 37’ 00.00” 22° 57’ 00.00” 22 0.016±0.006
2 40° 16’ 21.00” 22° 29’ 43.80” 29 -80.451±0.004
3 40° 12’ 17.55” 22° 19’ 37.12” 368 -171.858±0.003
4 40° 08’ 22.01” 22° 18’ 16.27” 1037 -319.659±0.003
5 40° 06’ 03.38” 22° 15’ 21.73” 1263 -376.799±0.004
6 40° 02’ 22.79” 22° 20’ 16.72” 1909 -501.799±0.006

(1)



In matrix form, the system of observation equations could be written as

where
b is the vector of n reduced observations (observations g’-approximations go),
x is the vector of q corrections of approximated gravity values,
p is the vector for r1 drift factors d and r2 corrections y for scale factors,
A, B are the n×q and n×r design matrices, and
v is the vector of the residuals.
By the adjustment principle, vTPv=min, where P is the weight (in our case diagonal) matrix,

the system of normal equations reads

It is well known that, depending on the geodetic problem, the matrix Nx has a rank deficiency
related to the definition of the reference frame. In our case the rank deficiency is equal to one.
The problem could be easily solved by fixing the gravity value at a station, but in this case the
actual error during the gravimeter reading at this station should be propagated to the other sta-
tions. To avoid this, in earlier papers (see e.g., Torge et al., 1976; Arabelos et. al., 1983) the inner
constraint solution was adopted.

For defining the scale of the network, we use the condition y=0 for one scale factor.
The inner constraint solution (eq

T x=0, eq= [1 1... 1]T) is given by the equations

where

and

Rx = NxNxp Np
−1Nxp

T[ ] + eqeq
T

p̂ = Np
−1 up − Nxp

T x̂[ ],

x̂ = Rx
−1 ux − Nxp Np

−1 up[ ],
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Table 2 - Measuring periods in the calibration line with the three gravimeters.

Period LCR201 LCR265 LCR481

1 30.09.75-31.10.75 30.09.75-31.10.75 -
2 07.06.77-10.06.77 07.06.77-10.06.77 -
3 22.10.80-25.10.80 22.10.80-25.10.80 22.10.80-25.10.80

(2)

(5)

(4)

(3)

(6)



The estimates v̂ of random errors and the a posteriori variance σ̂ 2 are given by the equations

and

The relative matrices of covariances are given by

The test for outliers in the observations is carried out using the data snooping strategy

The simultaneus testing of significance of the drift and scale factor (H0:p=0) is based on the
relation

p̂TQp̂
−1p̂

qσ̂ 2 ≤ Fq, f
α ,

ri = v̂i

σ̂ v̂i( ) , σ̂ v̂i( ) = σ̂ Q
V̂[ ]

ii
, ti = ri

f −1
f − r1

2 ≤ t f −1
α / 2 .

Ĉ
V̂

= σ̂ 2Q
V̂

= σ̂ 2 P−1 − AQx̂AT − AQx̂p̂BT − BQx̂p̂AT − BQp̂BT( ).
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Table 3 - Individual weights used for the common adjustment.

Instruments

Period LCR201 LCR265 LCR481

1 0.450 0.681 -
2 0.386 0.902 -
3 1.000 0.500 0.351

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

.



A more analytical test can be done separately, either for the drift factor or for the scale fac-
tor, according to the relation

where

When a single parameter pi is to be tested (H0:p=0), the statistics become

A significant criterion for the assessment of the reliability of the data snooping and the other
tests is introduced through the redundancy numbers, which can be computed for each observa-
tion from the relation

The redundancy numbers serve us a measure of the controllability of each observation.

f i =
q2 v̂i( )

σ̂1
2 = 1−

q2 ŷi( )
σ̂1

2 , where q2 v̂i( ) = Q
V̂[ ]ii

or q2 ŷi( ) = Qŷ[ ]ii
.

ti = p̂i

σ̂ p̂i( ) ≤ F1, f
α = t f

α / 2 , where σ̂ p̂( ) = σ̂ Qp̂[ ]
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.
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Fig. 1 - Linear scale factor of LCR201 and LCR265 versus time.

(16)

(17)

(18)

(19)

.



3. Computations and results

Three periods of calibration measurements are available, performed with three G-type gravi-
meters LCR201, LCR265 and LCR481. The last gravimeter was used only during the last mea-
suring period. Table 2 shows the measuring periods with the three gravimeters.

Although never published, the analysis of these measurements was done some years ago for
the applications mentioned in the introduction. The reason for the readjustment of the network
was that recently actual tidal parameters for the accurate tidal correction became available
(Arabelos, 1991), periodical errors of the measuring screw were determined for LCR265, and a
new idea was born for the treatment of the measurements. This idea was to introduce as a com-
mon adjustment the measurements of each gravimeter for each measuring period with individual
drift factors, scale factors and measuring accuracy, i.e., like measurements performed by separa-
te instruments each with its own behaviour. According to this, individual weight factors are nee-
ded to characterize the accuracy of each instrument, and each measuring period. To estimate such
weight factors, separate adjustments of the observations per measuring period were performed,
arbitrarily making the corresponding scale factors equal to one. Consequently, the required wei-
ght factors were computed using the formula

where m0
(i, α)  is the r.m.s. error of one observed gravity difference, corresponding to instrument

i and period α, and p(201,3)=1. Table 3 shows the computed weight factors resulting from the pre-
viously described procedure the are used in the common adjustment.

The number of observations introduced in this adjustment was 162, and the number of unk-
nowns was 19 (6 unknown corrections + 7 drift parameters + 6 scale factors) so that the number
of degrees of freedom was 143. The mean square error of the unit weight was equal to 0.016
mGal. The redundancy number varies between 0.70 and 0.98. This means that the reliability of
the network is satisfactory for the purpose of instrument calibration.

The results of the adjustment are shown in Tables 4 and 5.
From Table 4 it is evident that the linear drift coefficients are not significant. According to

p i,α( ) = m0
201,3( )

m0
i,α

⎛
⎝⎜

⎞
⎠⎟

2

p 201,3( ) ,
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Table 4 - Linear drift factors for the various instruments and measuring periods. Unit for d̂ and σ̂d is μGal/h.

LCR201 LCR265 LCR481

Period d̂ σ̂d t d̂ σ̂d t d̂ σ̂d t

1 0.45 0.44 1.02 0.69 0.49 1.41
2 -1.13 0.50 -2.26 -0.60 0.39 -1.53
3 -0.09 0.39 -0.23 -1.22 0.50 -2.44 -1.36 0.59 -2.31

(20)



eq. (18), the value ti is compared to the value t 144
0,025=1.98, for significance level α=0.05. On the

other hand there is no clear trend characterizing the drift behaviour of the instruments. Although
the gravimeters were always transported together in the same car, the poor results for the drift
could be attributed to shocks suffered  on the mountainous part of the road.

The same results for significance tests are shown in Table 5.
In Fig. 1 the scale factors of LCR201 and LCR265 are plotted. The almost linear change in

the scale factor for both instruments is notable.

4. Conclusion

Repeated gravity measurements on a “relative calibration line’’ were used to study the stabi-
lity of the scale factor of two LaCoste-Romberg gravity meters. The reliability tests showed that
these measurements are satisfactory for calibration purposes. The changes in the calibration
coefficient of the gravimeters used in this test are almost linear and of the order of 3.5x10-5/year
for the LCR201, and 1.09x10-5/year for LCR265. Although these changes are small enough, they
cannot be ignored, at least in the case of networks established for geodynamic applications, since
they produce changes in the measured gravity differences of the order of 3.5 µGal/100 mGal for
LCR201, and 1.1 µGal/100 mGal for LCR265.

Aknowledgement. The establishment of the control network as well as the repeated measurements were made in the
framework of the former Department of Geodetic Astronomy of the University of Thessaloniki.
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1 0.99974598 3.11 -81.67 0.99993941 2.86 -21.19
2 0.99981611 3.48 -52.84 0.99995079 2.73 -18.02
3 0.99990518 2.68 -35.38 1.00000000 1.00008542 3.54 24.13



Arabelos D.; 1991: Improvement of the accuracy of the LaCoste-Romberg Model G gravity meter with an electronic
feedback. In: Festschrift zum 60. Geburtstag Torge, Wissenschaftliche Arbeiten der Fachrichtung
Vermessungswesen der Universität Hannover, Nr. 172, Hannover, pp. 7-13.

Baker T. F., Billiris H., Cerutti G., Corrado G., Kahle H. G., Marson I., Müller M., Paradissis D., Pezzoli L., Plag H.-
P., Pomrehn W., Richter B., Romagnoli C., Spencer N. E., Tomasi P., Tsimplis N. M., Veis G., Verrone G., Wilson
P. and Zerbini S.; 1993: Sea-level fluctuations: geophysical interpretation and environmental impact (SELF). In:
Proc. of the Symposium Global Change and Climate Change Impacts, Focusing on European Research,
Copenhagen, Sept. 6-10, 1993, in press.

Makris J., Mavridis L. N., Menzel H., Stavrou A. and Veis G.; 1973: The gravity field of Attika, the Peloponnese and
Kithira, Greece. ZfV, 39, 929-936.

Mavridis L. N., Arabelos D. and Karrinti I.; 1980: The Gravity Field of Northern Greece. I. Eastern Macedonia and
Western Thrace. In: Proceedings, Academy of Athens, 55, pp. 372-381.

Mavridis L. N., Arabelos D. and Karrinti I.; 1980: The Gravity Field of Northern Greece. II. Western Macedonia. In:
Proceedings, Academy of Athens, 55, pp. 419-428.

Rossikopoulos D.; 1992: Surveying networks and computations. Editions Ziti, Thessaloniki (in Greek).

Torge W., Mavridis L. N., Drewes H. and Arabelos D.; 1976: Anlage eines Schwerenetzes hoher Präzision im Bereich
der Ägäischen Platte. ZfV, 101, 213-220.

Torge W., Mavridis L. N. and Arabelos D.; 1981: High-Precision Gravity Network in the Aegean Region. In:
Proceedings of the International Symposium on the Hellenic Arc and Trench (H.E.A.T.), Vol. II, Athens, pp. 361-
375.

Torge W.; 1989; Gravimetry. De Gruyter, Berlin, New York.

62

Boll. Geof. Teor. Appl., 38, 1-2, 55-62 ARABELOS and ROSSIKOPOULOS


