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F. FANUCCI! and S. SANTINI2: 3

STUDY OF A MATHEMATICAL MODEL WITH CYLINDRIC SYMMETRY
FOR CONVECTION IN THE UPPER LAYERS OF THE MANTLE

Abstract. Two-dimensional numerical models of steady state convection show that convection cells of
large aspect ratio are possible for variable viscosity convection in the upper mantle. Qur model includes
the effects of variable viscosity, viscous dJsSlpatlon heat flow through the bottom and the adiabatic gradient.
The large aspect ratio of the convection cells is primarily due to the large viscosity conirast between the
lithosphere and the asthenosphere.

INTRODUCTION

Convective motions in the mantle are possible through the quasi-fluid behaviour, on a
geological time scale, of rocks with sufficiently high temperature and pressure; although for
convective motions in the mantle, the usual velocity does not exceed 10 cm per year, such
phenomenon exhibits qualitative characteristics typical of chaotic motion.

The mantle is a very special “fluid”: it has a practically infinite Prandtl number
(Pr=10" 23) and a viscosity typically non-linear and dependent on temperature, pressure and
state of tension. It is also compressible, with thermodynamic properties which depend. on
temperature and pressure, .and melts changing its properties and redistributing its internal sources
of heat.

Very detailed descriptions from a physical-mathematical point of view of thermal convection
in general, and on convection in the mantle in particular, can be found in the quite recent
scientific literature: some of the most recent articles are cited in the bibliography (Busse, 1978,
1981, 1989; Turcoite and Oxburgh, 1972, 1978; Richter, 1978; Schubert, 1979; Peltier,
1985, 1989; Hager and Gurnis, 1987; Roberts, 1987; Christensen, 1989; Jorvis and Peltier,
1989).

In this paper we analyze again a simple model, already described in studies of the ‘“‘earth
dynamo”’ (Busse, 1970, 1975, 1976), and we apply it to convective cells of the upper mantle,
only for the part of the earth’s surface bounded to the north by the Tropic of Cancer and to
the south by the Tropic of Capricorn.

It would appear that variable viscosity greatly influences the convection pattern and that
viscous dissipation may not always be negligible. For these reasons we have included these
factors in the present model. Finally, the convection solutions are essential to obtain the
temperature distribution within the upper mantle.
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" Fig. 1 — Geometry of the rotating annulus model with cylindric symmetry.

GLOBAL ANALYSIS OF CONVECTION IN THE MANTLE

We consider the constraints on the convection of a fluid due to the rotation (see Fig. 1),
driven by hydrostatic forces as given by (Boussinesq, 1903). '

The motion is ruled by the momentum equation for viscous fluids and by the continuity
equation, where the liquid is assumed to be incompressible (the variation of density appears
only as a perturbation at the first order):

du o 1 o ’
L+ eka)=— v p+ 2
dt Qo Qo

—

V.i=0 @)

In these equations, @ is the fluid angular velocity, U is the fluid velocity relative to the rotating
frame, P is the pressure, g is the acceleration due to gravity plus centrifugal effects and v=nlg
is the kinematic viscosity. . '

Here, the small variation in density @’ is assumed to be maintained by the heating and/or

cooling of the fluid. When the motion is slow and in a quasi-steady state, then the first and
the last terms of eqn. (1) are negligible, and the curl of eqn. (1) leads to

@-v)i=0 (3)

This is the theorem of Proudman-Taylor (PTT) (Proudman, 1916; Taylor, 1917, 1923, 1974),
which says that the field is bidimensional and does not depend on the coordinate which is parallel

to the rotation axis; so we can conclude that “slow steady motions relative to rotating axes must
be two-dimensional”’ (Chandrasekhar, 1961).

CONSEQUENCES OF THE PROUDMAN-TAYLOR THEOREM (PTT)

In those systems where the rotation cannot be neglected, the fluid tends to obey the PTT.
If the nature of the main driving forces and the geometry of the fluid container do not allow
the PTT to be satisfied, the motion is strongly restrained in some directions. These conditions
can be clarified in the following example.

Let us consider a fluid which is confined between two horizontal planes separated by a




CONVECTION IN UPPER MANTLE 147

N
\
AU TSNP o \
~ > ‘l\ D
- o AN \
R A\ N
© .. N N
— LA
l p BN
\

Y
X ls

Fig. 2 — Preferred modes of convection in a Benard layer when @ is horizontal.

distance D. The fluid is heated from the bottom and cools at the surface, so that in the equilibrium
state (absence of motion), the gradient of temperature (3 is kept between the surface and the bottom.

When rotation with horizontal axis takes place, and instability is produced, characterized
by motions independent of z and an axis parallel to the rotation axis (see Fig. 2).

This motion follows PTT and is influenced by the rotation only because it is coaxial with
) (there is no component of horizontal motion along z).

THERMAL CONVECTION IN AN ISOVISCOUS LAYER OF THE MANTLE

If we consider a flat layer with free boundaries, at a fixed temperature, the solution for
the convective motion can be described as follows (Loper, 1985).

Having defined the values of the state without motion with the subscript zero, we can define
a stream function q as '

. @TX | Ty
=kA , 4
q sin —p— sin e (4)
and a temperature T as
V2
T=To (x})— 3. BHA sin 7;,_; cos \;’-EI):I ) )

where 3 is the gradient of temperature along x, H is the typical depth of the convective cell
in question and k is the thermometric conductivity.

The thermal condition at each boundary depends on the heat transfer in the neighbouring
medium. When it is very easy, either a fixed temperature or a fixed temperature gradient can
be assumed. In this approximation, as a starting point, we are limiting ourselves to consider
only the fundamental cell, although for a more realistic situation, many wave-numbers are needed
(see e.g. (Stewart and Turcotte, 1989)).

From eqns. (1) and (2), the stress tensor for an incompressible fluid takes the form (Landau
and Lifchitz, 1971)

O'ik:—Péik'f'I/Q (BV, /(?xk+3Vk / aXi ), (63)
where ff=(v, u ; v=—dq/dy , u=4d q/dx

and J; is the Kronecker delta symbol.
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If we consider only the x-direction (i=k=1), we have

o,=—P+2vp (9V, / dx); (6b)
that is
o,=—P+2pp (dv / Ix), : (6¢)
and therefore
& q
=—pP-2 7
oy ve Oydx (7a)

From eqn. (4), 3%q / 9x*=2 (8’q / dy* ), by the modified Navier-Stokes equations

—%— =o» (Bu !+ /05 ). (7b)

Integrating, P is obtained such that

# q 2(92q

P=
@ \ayax T ayox

) +Po (x), (Tc)

where Po (x) is the integration constant, which is clearly identified as a hydrostatic pressure
by dimensional analysis. Remembering eqn. (4) and substituting in eqn. (7a), we have

57 vk
o,=—Po (x)— V2 1;52 A cos 7‘; cos \/7‘22_’[-] (8a)
The perturbed boundaries are denoted by
x={} (¥); and x=H+{ (y). (8b)

We shall distinguish between two kinds of bounding surfaces: rigid surfaces on which no
slip occurs and free surfaces on which no tangential stresses act.

Considering first a rigid surface, the condition that no slip occurs on this surface implies
that not only v, but also the horizontal component of velocity u, vanishes. Thus u=0 in addition
to v=0 on a rigid surface. C

Considering now a free surface, the condition that no tangential stresses act implies that P=0.

At the surface, the pressure is P=Po (H)—g, g (H—x), where @,=0 is the density over
this surface; so Po (H)=0 and o, (H)=—¢ g{, of the Rayleigh number is given by
Ra=Ra,=27 7* /4 (Chandrasekhar, 1961), ie. »/g=(8 H* 0)/Ra, , it follows that

¢ o=+ ——1207;/3 aBH? A cos 1/7’22’H (8c)

Let us suppose that on the bottom, a fluid with density @, is pushing, and the pressure,
assumed to be hydrostatic, is pgH=Po (0)—p, gx.

At level ¢, , this pressure equals —o, ({}, ). Therefore

—0o, (0) —og{y =Po (0)—e; 85 - (9a)

From eqn. (8a), the values of (0,+Po) at x=0 and at x=H are opposite:
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Fig. 3 — Two-dimensional marginal convection with stress-free boundaries.
o, (0)+Po (0)=—0c, (H)=pgs, . (9b)
It follows that
g, (0)+Po (0)
) = -, (99)

(61 —0)g  or—e
where @ and g, are the density over and under the bottom of the cell.
This convective motion has been drawn in Fig. 3, with the aid of eqns. (8) and (9c).

Thus, the dimensions of the cell along the y-axis are twice those along the x-axis. We had
calculated previously that H is 700 km, including the lithosphere (thickness=100 km); it comes
out that the above described cell can be approximated by a rectangle whose sides are 700
and 2000 km.

If we list in the Table the parameters characterizing the convective cell for the three

fundamental sets of conditions at the boundaries, we conclude that the greatest convective cell
length is about 3000 km.

Table — Convective cell parameters.

Nature of upper and R, a=k-H 27 1=2 v2-H
lower surfaces k=wave length " cell length
Both free 657.511 2.2214 2.828 = 2000 km
Both rigid 1707.762 3.117 2.016 =~ 2806 km
One free and 1100.65 2.682 2.342 =~2415 km
one rigid

The equations

We consider therefore a horizontal infinite layer of fluid which rotates at a constant velocity
called §. For the convective problem we are considering, it is enough to work with the equations
of motion and the conduction of heat in the Boussinesq approximation. The only factors to
be added, for the moment, are the effects of the Coriolis and centrifugal accelerations in the

equations of motion.

Thus we have

5111- 611'

+u. = —

ot T ox

Qo

)g;+1/V2u,-+

(10)
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where €, is the total antisymmetric tensor.

Let us consider an initial state where a temperature gradient 3 is kept constant and there
is no motion. The equations ruling small perturbances to the first order give

3t aX]' (2

where i=(1, 0, 0) is a unit vector in the direction of the x-axis, « is the coefficient of volume
expansion and ¢ is the perturbation in temperature. Thus we have

du, )
- P\ 4 padhii + v V2 u +265 u O, 11)
2 J

ad )
o B wtk v, 12)
au,-
7 O (13)

1

We can get rid of the term in P/g, by using the curl from eqn. (11); then, knowing that

d a a

u;
Eiik Ix, Etim W) 2= o, (u; O—u; 2)=1; P (14)
we get
aw; | dy;
T =gaey —(9;7‘1“-” V2W;+2.Qj —(?; . (15)

Using the curl from this equation, we get

%(V%Fm (4 v2z9_1;a—f’g; ) +8Vtu—20 ‘Z: (16)
Finally, if we multiply eqns. (15) and (16) by i we obtain the general equations

% =y V2 §+20, j; , 17)

% V2 v=ga ( % + %) +rVh—20, gi (18)

= . . .
Now assuming that @ has the same direction as the z-axis, and remembering the hypothesis
-~
on g that

g=g (17 Oa 0)7 (19)
3=2(0,0,1) (20)
then eqn. (17) becomes
o 2 av
9 9 21
9t pyVeg+20 P 21)

where ¢ and v are the x-components (vertical components) of vorticity and velocity respectively.
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Since §‘ is a component of vorticity (= curl V), it has dimensions s~'; so that

|51

We now transform eqn. (21) into an equation where all the quantities are dimensionless.

We indicate with L a characteristic quantity (linear dimension of a real cell), and make
the following changes:

t I, Qr? L?
S S N 2 4= L

Z
?’ L L L v v V4

(slowed times, reduced quantities).

It is straight forward to see that all the quantities are dimensionless. By a simple substitution
we get

b PP P Fd 90 .
5 " T T ez T g 22)

The dimension of the coefficients of the right-hand side is of the order of

1 107
EI‘; = ——Lz—— ~10° (characteristic length L~ 10°).
On the whole, the last term on the right-hand side is negligible. This result leads to a diffusion
equation with solutions for { which are particularly stable in time and with high symmetry.

An alternative idea is to look for a solution where v (x-component of velocity) is rapidly
varying with respect to z. In this case { (x-component of vorticity) could be relatwely stable
in space and approximate an harmonic function.

Then V 2® could be objectively small with respect to (F - V) O, so balancing the large
ratio between the coefficients: this would imply a certain asymmetry of v, when we move on
the plane zy.

Such a situation, which is outside the PTT, should be analyzed further.

CONCLUSIONS

The cylindric model considered seems an interesting model for the area between the two
Tropics.

Convection is confined inside the external ring that rotates around its symmetry axis; it
can be represented, approximately, by concentric circles with axis parallel to that of rotation,
since the small slope of the upper and lower borders of the ring guarantees that the Proudman-
Taylor-Theorem (PTT) is satisfied.

The resulis obtained for a model w1th constant viscosity are shown in Fig. 3; the Rayleigh
number in the case considered is 10°.

The stream function is symmetric with respect to the average point of the rising flow and
this symmetry is not significantly influenced by the Earth’s rotation.

Finally it should be clear that the maximum of the stream function is situated in the descending
area of the cell; as a consequence, the vertical velocity in the descending area is greater than
in the ascending, and the maximum of its velocity is on the surface, approximately above the
maximum of the stream function.

These simple, constant viscosity solutions probably have liitle relation to the convective
states inside the Earth. For example, the temperatures rise too slowly to serve as a realistic
representation of what occurs in the upper layers of the mantle.

The results obtained for a model with viscosity varying with depth seem more realistic;
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Fig. 4 — Convective cell temperatures in the variable viscosity case with bottom heat flux.
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Fig. 5 — Assumed kinematic viscosity profile as a function of depth only.

in fact it can be noted in Fig. 4 that the model, driven by a flow of heat that rises from the
bottom towards the top, shows a region over the bottom where the isotherms are nearer than
those situated in the layer under the surface.

This result would seem to be reliable enough even considering the fact that viscosity was
made to vary linearly with depth (see Fig. 5), and the angular point that appears at the boundary
between the lithosphere and the astenosphere could be the cause of a break in the continuity
of temperature in this zone. Better approximations, in the study phase, should resolve the problem.

Under the geodynamic profile the results attained in the study show three points of primary
interest:
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1) The theoretical developments of the model demonstrate that, even by varying greatly
the conditions in the surroundings, the single convective cells cannot go much beyond 3000
kilometers in amplitude. This does not match the real dimensions of the plates, which should
be drawn from the convective currents in real situations.

Also considering the fact that the descending portion of the cell is formed in part or completely
by the cold lithosphere in subduction, at most one can say that the convective currents can
be the active cause of plate movements around ridges but not over long distances.

2) The numerical variable viscosity model suggests that the lateral expansion of the warm
rising material appears, however, at depths too great to influence the movement of the plates.

The active convection model as the only cause of movement (extreme conception) of the
plates is rendered completely invalid by the previous considerations and the “softer’” conception
is also questioned. Further improvement of the study is necessary to verify these conclusions.

3) An interesting suggestion is offered by the numerical model of variable viscosity: it is
represented by matter at a high temperature that one finds at a minimum depth of 200 kilometers,
detached from the base of the asthenosphere.

Apart from the other considerations such an element could represent a preliminary {(embrionic)
model for the stoking of a hot spot of the “changeable’” kind (not rooted in the lower mantle).
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