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ABSTRACT We have conducted a gravity study using ground gravity data, via an automated iterative 
forward modelling method, to determine the Moho depth map in parts of the Zagros 
Mountains. The method used, the Maximum Difference Reduction (MDR) method, 
consists in a modification of the well-known Bott method for solving nonlinear inverse 
problems. The main characteristics of the MDR algorithm are: 1) the subsurface is divided 
into rectangular blocks to determine the gravity effect; 2) the density contrast is defined 
as a priori information, and is considered constant in the whole body. Therefore, we have 
no non-uniqueness; 3) depth correction in any station stops when the sign of a residual 
gravity anomaly differs from that of an observed one. As a result, the algorithm moves in 
one direction, and convergence occurs; 4) the inversion process stops when the residual 
anomalies fall within a predefined error range, which is controlled by the chi-square 
criteria. The method has been examined through a synthetic model and, then, applied 
to determine the Moho depth under the Zagros Mountains. The maximum Moho depth 
in the Zagros fold-thrust belt, Sanandaj-Sirjan zone, Urumieh-Dokhtar magmatic arc and 
central Iran, are found respectively at 45, 68, 52, and 42 km.

Key words: Zagros belt, Moho depth, gravity data, maximum difference reduction, iterative method, 
 2D nonlinear inversion.
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1. Introduction

The Moho (or the Mohorovičić) discontinuity is the boundary between the lowermost crust 
and the underlying mantle in the Earth. It is between 25 and 80 km deep beneath the continents, 
and 5 and 20 km deep beneath the ocean floor. This boundary is characterised by the distinct 
change in the velocity of seismic waves and by an intense increase in density. Therefore, its 
depth is usually estimated by seismological or gravimetric methods.

The Zagros Mountain belt is an active and young orogen created by the convergence of the 
Arabia-Eurasia plate during the Mesozoic and Cenozoic period (Berberian and King, 1981; Berberian 
et al., 1982; Mouthereau et al., 2012). Such belt is substantial for the geoscientific community as 
it is a well-exposed case of a continent-continent collision belt at an early stage of its evolution. 
Therefore, estimating crustal thickness underneath the Zagros Mountains can give key constraints 
on the lithospheric structure, for a better understanding of the dynamics of this mountain range, 
which has been studied, using different geophysical methods, by many researchers.

Dehghani and Makris (1984) obtained the crustal thickness variations in Iran through 
Bouguer anomaly modelling and suggested Moho depths of 50-55 km underneath central 
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Zagros, and 40-45 km in central Iran. Snyder and Barazangi (1986) did the same for Zagros and 
estimated a maximum Moho depth of 65 km in this region. Molinaro et al. (2005) presented 
a balanced cross-section of the south-eastern Zagros Fold-Thrust Belt (ZFTB) and found a 
52-kilometre Moho depth in central Zagros. Paul et al. (2006) used temporary seismological 
stations across central Zagros, computed crustal receiver functions, and obtained Moho 
depths of 70 km underneath the Sanandaj-Sirjan Zone (SSZ), and 42 km in central Iran. 
Manaman and Shomali (2010) imaged Moho depth variations across the Zagros collisional 
zone via the Partitioned Waveform Inversion (PWI) method. They estimated the Moho depth 
to be about 40-45 km throughout their profile with abrupt crustal thickening in the middle 
up to about 65 km. Manaman et al. (2011), through the PWI method, and applying a priori 
knowledge, estimated a Moho depth of 45 km beneath the ZFTB, with a maximum of 65 km 
under the Main Zagros Thrust (MZT), and the SSZ, and ~42 km below the Urumieh-Dokhtar 
Magmatic Arc (UDMA) and southern part of central Iran. Paul et al. (2010) presented a 
high-resolution image of the Moho beneath seismic transects obtained by receiver function 
analysis of teleseismic earthquake records. They found an average crust thickness of 43±2 
km beneath the ZFTB and the central domain. Motavalli-Anbaran et al. (2011) modelled the 
crustal thickness by combining different potential field data sets and found 60 km underneath 
MZT and 38-39 km in central Iran. Jiménez-Munt et al. (2012) proposed a first-order estimate 
of the crustal thickness by calculating the geoid height and elevation data combined with the 
thermal analysis, and computed the Moho depth below the high Zagros at ~60 km. Motaghi 
et al. (2015) obtained the structure of Iran, beneath a seismic profile, by simultaneously 
inverting data from receiver functions and fundamental-mode Rayleigh wave group velocity. 
They confirmed their results by modelling Bouguer gravity anomaly data; Moho depths of ~50 
km beneath Zagros, ~59 km beneath the SSZ and UDMA, and ~35 km beneath central Iran 
were found. Tunini et al. (2015) applied a combined geophysical-petrological method and 
acquired minimum values beneath central Iran (42-43 km), and maximum values beneath the 
SSZ (55-63 km). Mousavi and Ebbing (2018) estimated the crustal structural domains beneath 
the Iranian plateau by inversion of elevation and geoid anomaly data combined with thermal 
analysis. They found Moho depths of 30 to 60 km. Mousavi and Fullea (2020) modelled the 
crustal structure of the Iranian plateau by integrated geophysical-petrological modelling. 
Their results indicate that the deepest Moho boundary is located beneath the high Zagros 
Mountains (~65 km).

In all methods mentioned above, determining depth with geophysical methods is a nonlinear 
problem that can be solved through the iteration or approximation of a problem from nonlinear 
to linear (Blakely 1996).

The main challenge in using geophysical methods, especially in gravimetry, is that the 
responses in these procedures suffer from extreme non-uniqueness and instability. Non-
uniqueness in gravimetric methods occurs for two reasons: theoretical and algebraic ambiguity. 
Theoretical ambiguity is due to the nature of gravity. Many equivalent sources in the subsurface 
can produce the same data at the surface (Jackson, 1979). Algebraic ambiguity occurs when the 
parameterisation of the problem creates an underdetermined situation with more unknowns 
than observations. Ill-conditioned kernel matrices and data noise are also important causes of 
instability in gravimetric methods. For these reasons, we are exposed to an ill-posed problem 
(Blakely, 1996; Freeden, 2021).

Tikhonov regularisations are common to remove ill-posed problems (Hansen, 1998; Vogel, 
2002). It is also possible to insert a priori information (obtained from geological studies or 
theoretical estimates) and constraints into the algorithm and fix the ill-posed part of the problem 
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in an iterative process (Bott, 1960; Parker, 1973; Oldenburg, 1974; Pilkington and Crossley, 1986; 
Leão et al., 1996; Barbosa et al., 1997, 1999a, 1999b).

In the light of the aforementioned, to improve the knowledge on orogenic processes, in 
this paper, we intend to study crustal thickness variations across the Zagros Mountains via the 
Maximum Difference Reduction (MDR) algorithm. This algorithm has already been used to find 
the thickness of shallow sedimentary basins (Zhou, 2013). We used ground gravity data in the 
inversion process. These data are the densest and most accurate data set available. The MDR 
algorithm does not require the addition of many constraints or user intervention, and provides 
us with an automatic interpretation of the geophysical data. To overcome ill-posedness and non-
linearity, this method applies conditions and constraints in an iterative process to guarantee 
the stability and convergence of the algorithm. The results of synthetic models, and previous 
geophysical studies conducted in this area, can be an excellent basis to examine inversion 
algorithm responses. After a brief description of the geology and data available, we will present 
the method, apply it to a synthetic model and to central Zagros, and, then, illustrate its transition 
to the Iranian plateau as a real case.

2. Geological settings

The study area includes parts of the Zagros orogenic belt and central Iran. We modelled three 
2D profiles in the SW-NE direction across the ZFTB, SSZ, UDMA, and NW of central Iran; and the 
tectonic characteristics of these areas are reviewed as follows (Fig. 1).

Fig. 1 - Simplified regional geological map of Iran including the Zagros Fold-Thrust Belt (ZFTB), Sanandaj-Sirjan Zone 
(SSZ), Urumieh-Dokhtar Magmatic Arc (UDMA), and other structural units along with three profiles (AA’, BB’, and CC’).
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The Zagros orogenic belt of Iran, as part of the Alpine-Himalayan mountain chain, extends 
for about 2,000 km in a NW-SE direction, from the East Anatolian Fault of eastern Turkey to the 
Oman line in southern Iran (Alavi, 1994). This orogeny has undergone three successive geological 
events. The first occurred during the Early to Late Cretaceous, and included the subduction of 
the Neo-Tethyan oceanic plate beneath the Iranian lithosphere. The second occurred in the Late 
Cretaceous, and consisted in the obduction of Neo-Tethyan oceanic ophiolites over the Afro-
Arabian passive continental margin. The third event consists in the collision of the Afro-Arabian 
continental lithosphere with the Iranian plate, which started during the Late Cretaceous (Alavi, 
1994).

From NE to SW (Fig. 1), the Zagros orogeny comprises three parallel belts: the UDMA, SSZ, 
and ZFTB. 

The UDMA, with a width of 50 km, is composed of intrusive and extrusive rocks of the Eocene-
Quaternary age (Berberian and King, 1981), produced by the collision of the Arabian and central 
Iranian continental plate margins. Magmatic activity and north-eastward thrust faulting in this 
region are the results of the increased thickness of the continental crust (Alavi, 1994).

The SSZ, with a length of about 1,500 km in Iran, was shaped by tectonic processes such 
as folding and metamorphosis during the Early Cimmerian orogeny, tectonisation in the Upper 
Cretaceous, and deformation (along the ZMT). The outer belt of imbricate thrust slices and the 
inner belt, mainly of Mesozoic metamorphic rocks, form the SSZ. In this zone, metamorphic 
rocks are observed with large deformed and undeformed plutons (Berberian, 1997).

The ZFTB forms the less strained external part of the Zagros orogeny, and consists of a pile of 
folded and faulted rocks made up of 4 to 7 km of mainly Palaeozoic and Mesozoic successions, 
overlain by 3 to 5 km of Cenozoic siliciclastic and carbonate rocks. This belt, which lies on a highly 
metamorphosed Proterozoic Pan-African basement, was affected by the late Neoproterozoic–
Cambrian Najd strike-slip faults (Brown and Jackson, 1960; Agar, 1987; Husseini, 1988). The 
south-western boundary of the ZFTB defines the current Zagros Deformational Front (ZDF), to 
the SW of which deformation has not yet propagated.

The central Iranian zone is known as a triangular area. It is located between the Alborz and 
Kopeh Dagh range to the north, and the Zagros and Makran range to the west and south. The 
central Iranian crust, before becoming part of Eurasia (after the opening of the Neotethys in the 
Triassic), was decoupled as part of Africa. This microplate, formed in pre-Palaeozoic, shows no 
indication of Variscan orogeny (Delaloye et al., 1981). It is fragmented into several blocks by crustal 
faults (the Great Kavir, Nain-Baft, and Harirud faults). From east to west, these blocks are the Lut 
Block, the Tabas Block, and the Yazd Block (Berberian et al., 1982). These blocks detached from 
Gondwana in the late Palaeozoic and accreted to Eurasia in the Mesozoic, inducing Cimmerian 
collisional events (Zanchi et al., 2009a, 2009b). In contrast to the surrounding areas, the western 
part of central Iran is covered by currently subsiding basins. It is highly aseismic and, therefore, 
considered to behave as a rigid block (Jackson et al., 1995; Allen et al., 2004; Guest et al., 2007).

3. Data

The Bouguer anomaly data used in this paper have been acquired by the National Cartographic 
Center (NCC) of Iran. These grid data are of the terrestrial data type, and are the best in terms 
of accuracy and completeness. The Bouguer anomaly values range between -80 mGal at the 
south-western ZFTB, and -218 mGal in some parts of the SSZ. The data precision is about 5 
μGal. In addition, the distance between points on the grid is between 5 and 10 km. Topography 
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data were provided from 1 min TOPEX global data sets (ftp://topex.ucsd. edu/pub). A complete 
Bouguer anomaly map was obtained after applying terrain correction to the data with a radius of 
100 km, and taking 2,670 kg/m3 as the average terrain density in the area. The survey area is in 
the Zagros Mountains region. Since our research is two-dimensional, we selected three profiles 
crossing the area, roughly in the SW-NE direction from this grid. The Bouguer anomaly map and 
the three selective profiles are shown in Fig. 2.

Fig. 2 - Bouguer gravity anomalies of Zagros from ground gravity data prepared by the NCC of Iran. Three profiles, AA’, 
BB’, and CC’, are used in inversion modelling.

4. Gravity modelling

4.1. Forward modelling

The relationship between surface-observed gravity data and subsurface density is defined in 
a forward equation. The vertical component of the gravitational attraction of a two-dimensional 
body, at the origin using the Cartesian coordinate system, is given by (Blakely, 1996):

(1)

Here γ is the universal gravitational constant, ρ is the density and assumed constant within 
the body, and x and z are the distances from one point in the body to the origin. A numerical 
solution of this integral, for an L-sided polygon, is given by (Blakely, 1996):
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(2)

where

and

where r is the distance of the polygon vertices from the origin, θ is the r angle with positive 
direction of the x-axis, and p is the number of sides of the polygon.

In this study, we used a set of juxtaposition rectangular blocks (p = 4), extended downwards 
and parallel to the vertical axis, with different depth limits for simulating underground structures 
(Fig. 2). Fig. 2 shows the discretisation of sediment layers using 2D prisms. The grey prisms 
represent the sediment layer, while the white prisms correspond to the basement. The top of 
each prism is fixed according to the topography, while their bottom depths are to be estimated 
in the inversion process. The plus signs on the top centre of the prisms indicate the observation 
points on the surface.

The term on the right-hand side of Eq. 2 quantifies the contribution to the i-th data point of a 
unit density in the j-th cell (Gij). This response is valid only at station and for one prism. To obtain 
the total response at each i station, the gravity responses of N prisms are summed:

(3)

Geophysical data are always contaminated with noise, thus Eq. 3 in matrix notation is:

(4)

where G is the forward operator matrix or kernel, and e is a vector representing the measurement 
errors.

4.2. Inversion methodology

In gravity problems, density and depth estimations are linear and nonlinear problems, 
respectively. Therefore, finding the Moho depth via gravity data is a nonlinear problem. In 
nonlinear problems, models for finding depth are classified as either homogeneous, where the 
density contrast in the whole area is considered constant, or heterogeneous, where the density 
contrast varies with space. In both cases, the subsurface can be divided into rectangular prisms. 
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In this paper, we assumed density as a constant in the whole model.
One method for solving nonlinear problems is forward modelling, which can also be called 

inverse modelling if used in a fully automated process (Blakely, 1996). As inverse modelling, we 
used the maximum difference reduction method (Eqs. 5 to 12), an automated iterative forward 
modelling method presented, for the first time, by Zhou (2013), of which a brief explanation 
follows.

The general rule in this method is that for each n interation, the depth correction, for the 
station with the maximum absolute gravity anomaly, is at first estimated according to Eq. 5. 
Consequently, the depth correction at any other station is automatically updated and is 
proportional to the ratio of its absolute residual gravity anomalies, which are normalised by the 
absolute maximum residual and, then, normalised by the density contrast. For the next iteration, 
new anomalies are calculated using the new depths. At this point, the algorithm, after examining 
the various conditions, enters the next iteration or stops.

(5)

where

(6)

and

(7)

In the first iteration, (n = 1), we need to define C 0max and Δ0 in Eq. 6. Since no anomaly has 
been calculated yet, the absolute maximum of the observed anomalies must be considered 
as C 0max (Eq. 8). Two choices are possible for determining Δ0. The best initial value for Δ0 is the 
one that produces a gravity anomaly profile close to the observed one. Test runs showed that 
Δ0 = (0 to 7) times the thickness of the infinite slab, corresponding to the maximum absolute value 
of the observed gravity anomaly, is a good empirical choice (Eq. 9) (Zhou, 2013). Therefore, Δ0 

values are calculated for all coefficients from 0 to 7, then Eq. 5 is calculated, and finally, the gravity 
anomaly values are calculated using these thicknesses. Among these calculated anomalies, the one 
with the smallest difference from the observed anomaly is selected. Therefore, the coefficient that 
produced this anomaly is considered a selective coefficient. We may also use a value of zero for 
the initial Δ0. In this way, the initial depth for all stations starts with 0. Selecting the first or second 
method does not affect the responses, but the first method reduces the number of iterations in 
the algorithm. The initial depth estimation limits the range of responses according to Eq. 9.

(8)

(9)
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The conditions to be taken into consideration for algorithm convergence control should 
be examined next. For this, we compare the sign of (Δgobs,i – Δgcal,i) with Δgobs,i in any station. 
Whenever these signs are different, the corresponding depth is scaled down to a portion of the 
depth of the previous iteration, in accordance with Eq. 10:

(10)

where:

(11)

If the sign does not change, the iterations continue according to:

(12)

The algorithm execution will stop whenever the chi-square criteria (Eq. 13) are satisfied:

(13)

where N is the number of data and σ is standard noise deviation.

Fig. 3 - a) Underground discretisation based on 2D-rectangular blocks. The grey prisms represent the sediment layer 
while the white prisms correspond to the basement. b) A section of the lower surface of the gravity profile.

a b

With regards to the algorithm convergence, it is of utmost importance to choose the proper value 
for z0 in Eq. 6. A value ranging from 1 to 5 m can be a desirable choice for z0. The z0 value is compared 
with a percentage of the amount of depth correction of the previous iteration. If the correction value 
is smaller, the z0 value is chosen. Also, if for large depths a too-small value is taken for z0, the algorithm 
is effectively caught in a loop of infinite iterations. A small value (1 m) is selected for detecting shallow 
depths and a large value (5 m) for deeper ones. A flowchart of the MDR algorithm is shown in Fig. 4.
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5. Synthetic analysis

To evaluate algorithm efficiency, a model, close to the characteristics of the study area, has 
been considered, and three different noise levels have been applied. A profile, with a length 
of 252 km and 42 stations, is designed as a synthetic model. A constant density contrast of 
-200 kg/m3 and depths up to 50 km are used. The shape of the underground structure is shown 
in Fig. 5.

Fig. 4 - Flowchart of the MDR method.

Fig. 5 - Underground structure shape of the synthetic model.
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Gravity data have been calculated using Eq. 2. Since real data are always contaminated with 
noise, some noise is added. The common practice of adding errors to synthetic data is performed 
by adding random noise based upon a percentage of the datum value plus a constant (Li and 
Oldenburg, 1996, 1998). The latter ensures that data values close to zero do not have zero errors 
assigned to them. We assumed that the contaminating noise on the data is independent and 
Gaussian with zero means. Therefore, random numbers are generated using the randn function in 
Python and, then, multiplied by the expression (η1×g + η2×maxIgI). The standard noise deviation 
is η1×g and η2×maxIgI is the constant amount. In this paper, we considered three different noise 
levels: the first level being η1 = 0.01 and η2 = 0.001, the second level η1 = 0.02 and η2 = 0.005, 
and the third level η1 = 0.03 and η2 = 0.01.

Figs. 6 to 8 show simulated data and results for the inversion considering the different noise 
levels. For simplicity, the results of the synthetic models for all three noise levels are also shown 
in Table 1.

a

c

b

d

Fig. 6 - Inversion results for the synthetic model with noise level 1 (η1 = 0.01 and η2 = 0.001): a) true gravity and gravity 
with noise used as gravity observation; b) true depth (red line) and depth obtained from inversion (blue circles); c) 
observed (blue line) and calculated (red line) gravity; d) chi-square as function of the iteration number.

According to the results of the synthetic modelling as given in Figs. 6c to 8c, we obtained 
a better fit for smaller depths compared to larger ones. This is a consequence of our way of 
defining the noise level. This method adds further noise to larger anomalies and greater depths. 
Also, Table 1 shows that the maximum difference between the inverted and the original depths, 
in models 1 to 3, is between 3.5 and 4.5 km.
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The conformity degree of calculated and observed anomalies is expressed by the root-mean-
square error (RMSE), with values between 2.4 and ~5 mGal, which correspond to the magnitude 
of the added noise. Hence, for this synthetic model, the MDR method achieves an accurate data 
fit (Figs. 6b to 8b).

Model 1 was calculated twice to show the effect of initial depth selection using Bouguer 
slab estimation (model 1A) and zero-depth for all stations (model 1B). Although the results are 
remarkably similar, the number of iterations will increase in the presence of more stations or 
greater depths.

a

c

b

d

Table 1- Inversion results of the synthetic model with three different noise levels.

 
Model No.

 
Noise

 Number Data RMSE Model RMSE 
Chi-square

 
	 	 	 of	iterations	 (mGal)	 (m)

 1A  10,495 2.5324 3,509 51.15

 1B  10,804 2.4755 3,639 51.15

 
2

 η1 = 0.02 
11,956 4.0043 4,304 51.16

 
  η2 = 0.005

 
3

 η1 = 0.03 
12,370 5.0845 4,519 51.16

 
  η2 = 0.01

η1 = 0.01
η2 = 0.001

Fig. 7 - Inversion results for the synthetic model with noise level 2 (η1 = 0.02 and η2 = 0.005): a) true gravity and gravity 
with noise used as gravity observation; b) true depth (red line) and depth obtained from inversion (blue circles); c) 
observed (blue line) and calculated (red line) gravity; d) chi-square as function of the iteration number.
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According to Table 1, the number of iterations increases with the rising noise levels.
Given that the number of data is 42, the N + √–2N value as the targeted noise level in the chi-

square formula is about 51.17. According to Table 1, the algorithm stops before reaching this 
value for all noise levels.

6. Results and discussion

In the previous section, we examined the method with synthetic data and here we apply the 
method to real data. Since we used the MDR algorithm in 2D modelling, three profiles (AA’, BB’, 
and CC’, see Fig. 1) were selected from the grid in the deepest area with the largest Bouguer 
anomalies, and where Moho depth is most controversial among researchers. These parallel 
profiles cross Iran in the SW-NE direction, starting from a point in the ZFTB and passing Zagros 
and parts of central Iran (Fig. 2). The profile length is between 460 and 480 km, and the distance 
between the stations is approximately 6.6 km. The profile lengths and sampling intervals are 
selected based on Li and Oldenburg (1996) and Boulanger and Chouteau (2001). In our algorithm, 
density contrast is considered constant in the study area. According to geophysical studies in 
this region (Mousavi and Ebbing, 2018; Ardestani and Mousavi, 2023), the best average density 
contrast is -100 kg/m3.

a

c

b

d

Fig. 8 - Inversion results for the synthetic model with noise level 3 (η1 = 0.03 and η2 = 0.01): a) true gravity and gravity 
with noise used as gravity observation; b) true depth (red line) and depth obtained from inversion (blue circles); c) 
observed (blue line) and calculated (red line) gravity; d) chi-square as function of the iteration number.
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Figs. 9 to 11 show data and inversion results. For a better assessment, the maximum Moho 
depth beneath the profiles in selected zones is summed up in Table 2.

Table 2 - Inversion results of three profiles in the study area.

	 Max	Depths	 ZFTB	(km)	 SSZ	(km)	 UDMA	(km)	 Central	Iran	(km)

 Profile AA’ 45 58 38 40

 Profile BB’ 45 68 39 40

 Profile CC’ 45 56 52 42

a

b

c

Fig. 9 - Inversion results for real data (profile AA’): a) observed gravity anomaly; b) observed gravity anomaly (blue line) 
and calculated gravity anomaly (red line); c) Moho depth estimation.

According to our results, along the three profiles, the maximum Moho depth is 45 km for 
ZFTB, followed by an abrupt deepening to up to 68 km in the SSZ, and a new thinning in the 
UDMA zone and central Iran, where the maximum depths are 52 and 42 km, respectively. 
Qualitatively, these results were expected, and are explained by varying tectonic activities and 
geological history in Zagros and central Iran.

In modelling, the best responses are those that fit the observed data and, at the same time, 
concur with the geological structures. With the RMSE factor, we can check the algorithm ability 
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to find well-fitting responses. We have shown the data RMSE in Table 3, which shows that the 
resulting models fit the observations within their uncertainty ranges.

a

b

c
Fig. 10 - Inversion results for real data (profile BB’): a) observed gravity anomaly; b) observed gravity anomaly (blue 
line) and calculated gravity anomaly (red line); c) Moho depth estimation.

Table 3 - The RMSE of data misfit for the three resulting models.

	 	 Profile	AA’	(mGal)	 Profile	BB’	(mGal)	 Profile	CC’(mGal)

 RMSE 3.2404 3.2388 3.2471

To assess the MDR algorithm’s ability in underground structure reconstruction, we rely on 
the results of the synthetic models (as described in the previous section), and on the RMSE of 
the final models (Table 1). Considering that gravity data usually present level 2 noise, an average 
tolerance depth of 4 km, at the most, is expected in our real results. This corresponds to the 
results. In the second step, we compared our results with those obtained by previous researchers 
who used different methods. In the introduction, we explained the results of previous studies in 
the Zagros Mountains region. The structure of this area has been studied through the potential 
field and seismic methods, thus obtaining strongly varying results.
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Our results present the same trends as those obtained in other researchers’ studies. However, 
there are some disagreements in the details with a few. Therefore, for a better assessment, a 
thorough comparison is presented as follows.

First, our results are compared with the findings of Mousavi and Ebbing (2018), who applied 
inversion of elevation and geoid anomaly data combined with thermal analysis. The location of 
our AA’ profile corresponds to their AA’ profile. Although the two studies are in agreement on 
the Moho depth in the ZFTB, SSZ, and central Iran, there is disagreement with regards to such 
depth in the UDMA zone. The maximum Moho depth in the UDMA, in Mousavi and Ebbing’s 
(2018) findings and in our result, is 48 and 38 km, respectively (Fig. 12a).

As an example of seismic work, we compare our results with Paul et al. (2006), cited the 
most by other researchers. Our BB’ profile corresponds to their BB’ profile. They acquired Moho 
depths of 45, ~70, and ~42 km with receiver function analysis in the ZFTB, SSZ, UDMA and 
central Iran, whereas our results in these areas are 48, 68, and ~39 km. Thus, the two results are 
remarkably similar (Fig. 12b).

Another example of seismic method is the study of Manaman and Shomali (2010). Their 
technique was PWI, and, in most parts of the selected profile, their results were about 40 to 45 
km. However, they encountered an abrupt deepening to about 65 km in the profile centre. For 
these reasons, the results of our BB’ profile match theirs (Fig. 12b).

Fig. 11 - Inversion results for real data (profile CC’): a) observed gravity anomaly; b) observed gravity anomaly (blue 
line) and calculated gravity anomaly (red line); c) Moho depth estimation.

a

b

c
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a

b

Fig. 12 - Comparison between modelling results of: a) our AA’profile with Mousavi and Ebbing (2018) and b) our BB’ 
profile with Paul et al. (2006) and Manaman and Shomali (2010).

Although the MDR algorithm has previously been used by Zhou (2013) to find the thickness 
of shallow sedimentary basins (up to 9 km), it is an efficient method for determining depth in 
the Moho range (40-60 km in our study), without any changes. The only difference is that the 
iteration number increases in finding deeper depths.

The method can be used to determine the bedrock topography, if in the presence of denser 
gravity data with smaller grid-spacing (i.e. approximately 1-2 km). In this way, we can remove the 
Moho effect from the Bouguer anomaly, and use the residual anomalies for reconstructing the 
bedrock topography through the expressed method.

The technique has no limitation for upward or aero-gravity data sets. In these situations, it is 
necessary to correct the data to the ground level before running the model.

7. Conclusions

In this paper, two main factors have been considered simultaneously. The first is an application 
assessment of the MDR algorithm in the rebuilding of the subsurface structure, notably for the 
Moho depth, which is deeper than the typical sedimentary basin. The second is the finding of the 
Moho depth beneath the Zagros Mountains, which is debated but still important to know. To find 
the effect of gravity, we subdivided the subsurface into vertical prismatic cells, and, then, used 
the MDR method as a stable and automatic algorithm for 2D-inverse modelling. Iterations start 
from zero depth or from an initial depth model created through an infinite slab approximation 
of the Bouguer anomalies. Therefore, the depths are updated iteratively. The depth increase 
at each station is proportional to the ratio of the difference between the observed gravity and 
the calculated gravity, normalised to the maximum value of this difference, along the profile, at 
each iteration. Stabilisation is implemented by tracking the sign change of the residual gravity 
anomaly, at each station and each iteration, so as to force the convergence towards a single 
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direction. Two cases were studied: one with a synthetic data set (Figs. 6 to 8) and another with 
a field data set (Figs. 9 to 11). We tested the synthetic model with three different noise levels, 
all of which can reconstruct the real depth quite well. For the real data, the study area in central 
Zagros was modelled using high-resolution ground gravity data from three profiles. The results 
are generally in good agreement with previous studies. The algorithm has been written in Python.
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