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ABSTRACT  Mineral reserves are heterogeneous by nature, which can lead to a high variability in 
the intrinsic features of ores and in the responses to mineral processing operations. A 
geometallurgical model, along with a reliable reservoir block model, helps to quantify 
the significant variabilities and develop programs to deal with them. It is an important 
tool for mitigating production risks and improving economic performance in the 
modern mining industry. In complex porphyry ore deposits, samples with high sulphide 
copper and high oxide copper will be processed via flotation and heap-leaching units 
sequentially. Therefore, a geochemical domaining based on total copper grade and 
its oxide and sulfide fractions can be inferred as the block processing destinations to 
different processing units or waste dump. Routine classification methods separate two 
domains with a sharp boundary. Since the error in grade estimation is unavoidable, the 
geometallurgical classification based on geochemical domaining will face uncertainty. 
Selecting a range threshold for each boundary, defining fuzzy membership functions, 
and assigning a membership degree to different classes for each sample would be a 
solution for this problem. This approach helps remove uncertainty in decision making, 
reduces the risk and increases the profitability of the project. This geometallurgical 
model is applied for different block dimensions with the aim of comparing the results.
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1. Introduction

Obtained features of mineralogy and geology studies are considered as intrinsic features of 
the ore body. These features include texture, degree of liberation as well as mineral dimensions 
which play important role in the behaviour of samples in the mineral processing factory (Coward 
et al., 2009; Biosvert et al., 2013; Lischuick et al., 2020). Achieving the mentioned behaviour 
as response features is difficult and expensive, therefore, geometallurgy seeks to find the 
relationship between the intrinsic and response features and models it through the ore body 
with the objective of mining operation optimisation and risk reduction (Lamberg et al., 2013; 
Khorram et al., 2020).

In order to take representative metallurgical samples that determine the natural variability of 
the processing response, it is necessary to partition a deposit into homogeneous regions in terms 
of processing properties, called geometallurgical domains (Emery and Ortiz, 2011; Williams, 
2013; Rajabinasab and Asghari, 2019). Quantitative rock characteristics such as chemical assay, 
petrophysical properties, mineralogy, and texture, are used to form these domains with regard to 
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processing properties. Considering the nature of geometallurgical variables and some challenges 
in working with them, such as non-additivity and measured properties in different scales, 
selecting a robust simulation and classification method is critical to achieve reliable results (Lund 
et al., 2015; Deutsch et al., 2016; Dominy and O’Connor, 2016).

Geometallurgical classification based on definite threshold limits can be risky and lead 
to uncertain results owing to the incompleteness of data and inaccuracy of simulation and 
classification performance (Demicco and Klir, 2004; Taboada et al., 2006; Ross, 2010). To overcome 
this problem, fuzzy methods, that are strategies to convert quantitative data to qualitative data, 
are used (Sinclair and Blackwell, 2002; Vann et al., 2012). In the present paper, a new fuzzy 
method, which gives the most reliable fuzzy number as thresholds for domaining, is used for 
the first time in geometallurgical modelling. Given that blocks, as a unit of the processing plant, 
are important in the efficiency of mine operations, in the last part of the article all of the fuzzy 
classifications are done for different block sizes for comparison.

2. Geometallurgy and fuzzy approach

Geometallurgy integrates a wide range of mineral processing attributes and intrinsic features of 
ore and optimises all mining operations based on the maximum available information (Dominy and 
AusIMM, 2011; Emery and Ortiz, 2012; Lischuick et al., 2020). The design of ore processing stages, 
optimisation of mining equipment size according to the limitations and operating costs, forecasting 
and optimisation of mining stages, risk reduction in feasibility, and production and operation stages 
are affected by geometallurgy (Lamberg et al., 2013). In this paper, the purpose of geometallurgical 
modelling is to classify the deposit in different zones with their own processing method and to 
predict the performance of the processing in different parts of the deposit. Table 1 and Fig. 1 show 
the intrinsic features and their corresponding response properties during processing (Schouwstra 
et al., 2010; Biosvert et al., 2013; Dominy and O’Connor, 2016).

Table 1 - Intrinsic features and their related tests (Bowell et al., 2011).

Topic Considered features Related experiment

Geology Geological unit and their relation Mapping

Chemistry Metal and mineralogical grade Assay analysis of holes

Mineralogy Texture, size and other features of minerals Microscopic images

Physical feature Hardness and grindability Bond work index

Processing responses Recovery Flotation and hydrometallurgy tests

Geotechnique Structural features RQD (Rock Quality Density)

Fig. 1 - Input and its corresponding output characteristics in geometallurgy (Coward et al., 2009).
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Ore and waste separation and geometallurgical classification of ore into different units, which 
reduces the risk of mine planning, is done based on the exact amount of the cut-off grade as a 
boundary. While error estimation is unavoidable, and considering the data incompleteness, 
inaccuracy and uncertainty, the fuzzy classification will be helpful in realistic decision-making (Verly, 
2005). The fuzzy method is used to make decisions in an environment with insufficient information. 
For this purpose, instead of separating two classes in a definite boundary, the fuzzy membership 
function is defined (Taboada et al., 2006; Ross, 2010). Common methods for fuzzifying definitive 
thresholds are the indicator weighted average (IWA) and class membership degree (CMD). This 
method was introduced by Journel (1983) to estimate the spatial distribution in ore and waste 
zones (Gossage, 1998; Lang et al., 2018). Using the indicators is a strategy to describe the grade 
of spatial distribution in different thresholds that are used to divide data based on thresholds 
and to convert quantitative data to qualitative data. Thus, the upper and lower limits of the fuzzy 
threshold are determined based on the frequency of the data (Vann et al., 2012).

This approach is applied to the data in two ways. The first is before the estimation and use 
of the point threshold on the input data. The second case is the use of a range threshold on the 
estimated data. The range of thresholds (membership function) is used to determine the degree 
of membership of each class (μ). If the number of thresholds is K, the number of indicators is 
equal to K+1 (Wingle, 1997). The method presented in this article makes it easy to determine the 
range limits of fuzzy numbers and was used for the first time in geometallurgical classifications 
(Morshedy et al., 2015). The IWA determines the fuzzy indicator of each block based on the 
threshold range and degree of membership (Fig. 2). This value is calculated for two classes of Cj, 
Cj+1 and n degrees of membership for different limits and their corresponding grades based on the 
following relationship:

(1)

(2)

a b

Fig. 2 - Thresholds for IWA calculation (a) and membership function of ore and waste classes (b).

210296 - OGS.BGTA-Khorram.04_online24_09_21.indd   3 22/09/21   13:16



4

Bull. Geoph. Ocean., XX, XX-XX Khorram et al.

3. Case study: the Sungun copper deposit

3.1. Geological description

The Sungun copper deposit is located in the Urmia-Dokhtar volcanic zone of the Alpine-
Himalayan belt. Most of Iran’s porphyry copper deposits were formed during the magmatic 
activity of this belt. Previous studies on the geological characteristics of this deposit 
distinguished three main zones: porphyry copper, skarn, and dikes (Hezarkhani, 2006). 
Spatial distribution of the “early phase” of hydrothermal activity (hypogene alteration) is 
more complex than the commonly accepted porphyry copper models. Also, the presence of 
a “later phase” of hydrothermal activity (supergene alteration) induces a high variability of 
grade and of oxide/sulfide copper ratio. The complexity of the case study certainly requires 
to apply a new approach for the geometallurgical model (Shahabpour, 2007; Asghari and 
Hezarkhani, 2008). Skarn mineralisation exists along the eastern and northern margins of 
the hydrothermal zone. Intersecting dikes were found mainly in the northern and eastern 
parts of the Sungun porphyry deposit. Most of these dykes have little or no mineralisation 
and vary in thickness from a few centimetres to a few metres, which is considered as waste. 
Along with the Mo, the main copper oxide and sulfide minerals in the Sungun porphyry 
deposit consist of plagioclase (40-45%), orthoclase (30-35%), amphibole (5-10%), biotite 
(5-10%), and quartz (5-10%).

Three main rock types have been recognised in the mineralised body and control the copper 
grade distribution (Hezarkhani, 2006): the Sungun porphyry (SP) stock, skarn mineralisation (SK), 
and injected dykes (DK). Table 2 demonstrates the statistical parameters of copper grade, for 
dykes, skarns, Sungun porphyry, and overall.

Table 2 - Statistical parameters of copper grade, for each rock zone and as a total.

Number of data Mean Std. deviation Skewness Kurtosis Minimum Maximum

DK  9016 0.08 0.22  6.30  59.39 0  3.58

SK    749 0.57 1.28 10.23 154.46 0 23.50

SP 20664 0.53 0.48   2.60  24.02 0   9.61

Total 30430 0.40 0.51   6.23 177.63 0 23.50

The case study deposit is divided into the optimal number of domains, and an area 
containing the supergene, hypogene, and leach zones is selected (based on stationary and 
continuity) as the study area (Journel and Huijbregts, 1978). This zone, with the coordinates 
of origin: X = 8000 m, Y = 4400 m, Z = 1900 m, is shown in Fig. 3. It covers a volume of 
approximately 0.8 km (longitude), 0.6 km (latitude), and 0.3 km (below the surface). Fig. 3 
shows the plan of the grade block model of a part of the Sungun copper deposit, the case 
study area is located in the western part of the map. The margins of the porphyry intrusion 
are skarn that is shown in brown, while the borders between the leach and supergen zones, 
and supergen and hypogene zones are illustrated with red and blue lines. The following data 
have been used in this research: 1) percentage of Cu, CuO, and Mo assays in drillholes; 2) 
percentage of Cu and CuO assays in blast holes related to a 6-year period.
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3.2. Geological maps and reports of the study area

Fig. 4 illustrates the location map of drillholes and blast holes in the case study area. Cu 
and CuO analyses exist in all drillholes, the average distance of adjacent wells is 70-100 m. All 
assays consists of 2-m down-hole lengths. Furthermore, 4,591 blast-hole samples are used for 
validation of results. The total copper grade is analysed in all the samples.

a b

Fig. 4 - Location map and value of available data for Cu grade: a) drillholes; b) blast holes.

The first step to conduct numerical studies is statistical pre-processing. Statistical 
characteristics and histograms of the frequency of data are shown in Table 3 and Fig. 5. The 
placement of missing data, and outlier and censored data removal were done. Declustering was 
used to remove the possible effect of irregular drilling.

Fig. 3 - Plan of the block model of copper grade in the study area, height 1900 m (Pars Olang Eng. Consultant Co., 2006).
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Fig. 5 - Histogram of the frequency of geochemical analysis in drillholes.

Table 3 - Statistical parameters of data.

Number Mean Skewness Standard deviation

CuO Blast hole 19491 0.041 7.30 0.079

Drillhole   1026 0.035 7.39 0.001

Cu Blast hole 19491 0.330 2.04 0.390

Drillhole   1026 0.410 0.79 0.350

Mo Drillhole    1026 0.010 1.85 0.010

a b

Fig. 6 - Directional variograms for Cu of blast hole (a) and drillhole (b).

Table 4 - Anisotropic ellipsoid parameters

Major axis/medium axis Major axis/minor axis Azimuth Dip Rake

Cu Drillhole 1.5 1.6 0 45 40

Cu Blast hole 1.1 1.2 135 90 0

After preliminary statistical studies, variography of Cu in drillholes and blast holes was done in 
different directions for three-dimensional structural and spatial analysis of the considered data. 
The fitted variogram model and also the attributes of the anisotropic ellipsoid are shown in Fig. 
6 and Table 4.
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4. Proposed algorithm for fuzzy geometallurgical modelling

The fuzzy triangular number is used in this paper because of its simplicity and generalisability. 
In the proposed method for determining the features of the threshold function, the confusion 
matrix and point threshold is used. To this end, we perform the mentioned classification 
based on a threshold around the cut-off grade, and the grade that reaches the highest correct 
classification rate (CCR) will be taken as a2 or the vertex of the triangular function. The a1 is 
the mean of the false negatives or underestimated blocks (ore blocks, which are classified as 
waste), a3 is the mean of the false positive or overestimated blocks (waste blocks, which are 
classified as ore) (Moon et al., 2009; Zapata et al., 2010). The mean blast-hole values of copper 
and copper oxide in classified blocks are used as real data. The triangular fuzzy threshold is 
introduced by the triangle whose vertices provide the most confidence in the classification 
(Fig. 7). The CCR is defined as the ratio of the number of samples in the confusion matrix 
diameter to the total number of samples with a value between 0 and 1 (Verly, 2005; Han et al., 
2006). In this equation the true positive (TP), true negative (TN), the false positive (FP), and 
false negative (FN) are used:

(3)

This value is very close to the definite cut-off grade on which the indicator of ore and waste 
are obtained based on:

(4)

Fig. 7 - Determining the triangular fuzzy number base on correctness coefficient rate.
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The class membership function in the introduced method is linear and has 0 membership 
for the ore class up to a1 grade. This function ranges from a1 to a2, which gives the highest CCR 
in the estimated data, with a fixed line slope of 0.5 degrees. This function, from a2 reaches to 
a3 and membership level of 1 with a steady line, a3 is the overestimation and the average value 
of the waste that has been classified as ore thus provides a reliable interval to separate ore 
and waste.

(5)

(6)

In this algorithm, the block simulation model of total and oxide copper is used for the fuzzy 
classification of geometallurgical domains. It is assumed that each mined block has three possible 
destinations: a) flotation if the total copper is above 0.15 (ore-waste cut-off threshold) and the 
dissolution ratio of CuS/Cutotal is less than 0.9 (the threshold for processing destination); b) waste 
dump, if the total copper is less than 0.15, and if the block achieves other conditions than these 
two conditions, it will be transferred to heap leaching. So we will have (CuS/Cutot = Sol):

(7)

(8)

(9)
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Based on these thresholds and considering that each of them is defined as a triangular 
function, in total, we have several classes (Fig. 8). The membership function of thresholds (μT), 
for each class can be determined according to the equation of the line. Since the waste blocks 
are not transferred to the processing plant, the processing destination of those blocks, which 
include a high degree of membership in the ore class, will be examined. Here the CuS/Cutot is 
called as dissolution ratio (Sol).

Fig. 8 - Schematic diagram of assigning membership degree to each block.

In order to change the support approach, the membership coefficients of ore and waste for 
block models with dimensions of 30×30×15, 25×25×12.5, and 20×20×10 m3 and ore value for each 
of them are calculated. The function of the ore value is examined in order to convert the grade 
to the relative value of the economic elements. This function determines the total value of each 
block according to the influential variables. To determine the cumulative value of the ore, the 
weighted coefficient of the element, the CMD μ and the grade of the valuable element are needed. 
Finally, the value of the ore is calculated by the sum of the multiplication of the weights of each 
element, the grade and the degree of membership of the ore for the desired element (Soltani and 
Hezarkhani, 2011).

 Ore Value = 𝑤𝐶𝑢 × μ𝐶𝑢 𝑂𝑟𝑒 × 𝑔𝐶𝑢 . (10)

After calculating the ore value, the false classification model is created for each of the models 
with different dimensions (Chai et al., 2004). A block with underestimation (FN) is an ore block that is 
misclassified and transferred to the waste dump. In this case, the calculated ore value for the block is 
lost and is determined as the incorrect classification cost:

. (11)

False positive (FP) is also a waste that is misestimated as ore, and increase ore tonnage, and 
all extractive, operating, and processing costs per ton are incorrectly calculated for that block:

. (12)
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It is worth noting that the disadvantage of ore loss is greater than the additional costs of 
extraction (Rogers and Kanchibotla, 2013). Fig. 9 shows the flowchart of the proposed method.

Fig. 9 - Flowchart of proposed method steps; FP and FN are false positive and negative.

5. Ore-waste classification

In order to implement the proposed algorithm on the study area, the average of 50 values 
of multivariate simulation of copper and copper oxide in block models with the considered 
dimensions, have been calculated. For this purpose, the DBSIM method was applied to the 
independent factors.

Fig. 10 - The estimated copper and geological map of a part of the case study area.
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The real cut-off grade for Cu is considered 0.15 for the actual data (average of the actual 
values in the equivalent blocks) and a range of the cut-off grade [0.1-0.2] is considered for the 
estimated 30×30×15 m3 blocks. The real, and range of cut-off for Mo is about 0.006 and [0, 0.1], 
the correctness classification rate of ore and waste was calculated on the estimation models and 
based on each value of their range. The grade in which this value is maximised is chosen for the 
vertex of the fuzzy triangular number, which is 0.15. Also (a1, a3) is equal to (0.09, 0.25) based 
on the average values that have been overestimated and underestimated in these classifications 
(Figs. 11 and 12).

a

c

b

d

Fig. 11 - a) CCR for different cut-off; b) Cu cut-off membership function; c) ore and waste membership function;  
d) relation of CDF with limits of fuzzy cut-off 30×30×15 m3.

a

c

b

d

Fig. 12 - a) CCR for different cut-off; b) Mo cut-off membership function; c) ore and waste membership function;  
d) relation of CDF with limits of fuzzy cut-off, 30×30×15 m3.
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6. Misclassifications based on copper

As explained before, the ore value function is examined in order to convert the grade to the 
relative value of the economic elements. This function determines the total value of each block 
according to the price of copper and molybdenum. After calculating the value of the ore, the 
misclassification model for different block dimensions is formed. For a block with a false negative, 
the calculated ore value for the block (based on copper and molybdenum) will be lost. For the block 
with false positive, the extraction, operating and processing costs per ton are incorrectly calculated. 
The sum of all these values is introduced as the incorrect classification cost for a block model. Fig. 
13 shows the spatial model of ore and waste membership degree in the 30×30×15 m3 blocks. Based 
on the identified areas in the figures, which are considered to be waste with a definite threshold, it 
is possible to visually observe the correctness of the fuzzy classification and decision-making band 
around each class. It can also be inferenced that the modelled blocks as waste correspond to the 
high concentration of the dykes (which has low grades of Cu and Mo) (Fig. 10).

d

b

c

a

Fig. 13 - a, b) Spatial model of Ore/Waste membership degree; c, d) spatial model of Cu grade.

Fig. 14 - Spatial model of classification groups 30×30×15 m3, FN and FP are false negative and false positive.
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Fig. 14 shows the different classification groups based on the cut-off grade for the 30×30×15 m3 
block. As can be seen from the figures, at higher altitudes, less misclassification occurs, which can 
be due to the high density of the specimens on the surface.

7. Misclassifications based on copper and molybdenum

According to our case study, which is copper and molybdenum mining, and based on the fact that 
molybdenum processing in Sungun copper mining is done in continuation of copper processing, 
in this section, to determine the false classification and the resulting cost, the net smelter return 
(NSR) will be calculated. All economic values used in these calculations are from reputable sources 
related to 2004 and only to create the correct ratio of these two elements (Rendue, 2013). Copper 
and molybdenum cut off grades are considered 0.15 and 0.01 according to the factory reports, and 
the specific gravity of these metals is considered 8.9 and 10.2 g/cm3, respectively.

In the mentioned relationships, Indicators 1 and 2 refer to copper and molybdenum metals, 
respectively. The required parameters for the calculations are given in Table 5, the relationship 
between the NSR, X1 and X2 thresholds is shown in Fig. 15. NSR corresponds to a metric ton of material 
with an average grade of X and is calculated as follows (Rendue, 2013):

NSR (x1, x2) = x1r1p1(V1 - R1) + x2r2p2(V2 - R2) - (Cs + Ct)/K = 2.149x1 + 7.39x2 - 2.014 (13)

NSRc = (Po1 + Po2 - Pw) + (Oo - Ow) + (Mo - Mw) = 3.55 (14)

with NSRc in $/t.

Table 5 - Mineral processing and mining operational cost (Rendue, 2013).

r1  =  89% copper flotation plant recovery
p1  =  96.5% copper smelting recovery
r2  =  61% molybdenum flotation plant recovery
p2  = 99% molybdenum roasting recovery
V1  = $1.20 value of one pound of copper sold
V2  = $6.50 value of one pound of molybdenum sold
R1  = $0.065 refining cost per pound of copper
K  = 72 metric tons of ore must be processed to produce one metric ton of concentrate
Cs  + Ct = $145 smelting and freight costs per metric ton of concentrate
R2  = $0.95 conversion, roasting, and freight costs per pound of molybdenum
Mo  = $1.00 mining cost per metric ton of ore milled
Po1  = $3.00 mill processing cost per metric ton milled
Po2  = $0.15 incremental molybdenum processing cost per metric ton milled
Oo  = $0.50 overhead cost per metric ton milled
Mw  = $1.00 mining cost per metric ton wasted
Pw  = $0.05 processing cost per metric ton wasted
Ow  = $0.05 overhead cost per metric ton wasted

Fig. 15 - The relation of NSR and Mo&Cu (Rendue, 2013).
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To determine the cumulative ore value, the weighted coefficient of the element, the CMD μ 
of the valuable and considered elements are determined:

(15)

(16)

(17)

(18)

. (19)

The fuzzy membership degree of each block related to Mo class (greater than 0.01% cut 
off grade), ore value (Eq. 18), and the cost of misclassification are calculated based on the NSR 
for the model with dimensions of 30×30×15 m3. For this purpose, all extraction, operation and 
processing costs that are mistakenly spent for the FP group are calculated for both copper and 
molybdenum elements and according to Table 5.

Also, the cost of misclassification based on copper cut-off grade, copper costs, and price for 
each model with dimensions of 30×30×15, 25×25×12.5, and 20×20×10 m3 is calculated. The 
values of the fuzzy number (a1, a2, a3) in order to determine the degree of fuzzy membership 
of ore and waste for block models with medium and small dimensions are equal to (0.22, 0.16, 
0.10) and (0.22, 0.14, 0.06). The results of the calculation of the misclassification cost are shown 
in Table 6. 

Table 6 - The results of false ore/waste classification cost.

Misclassification cost Loss of operational cost Loss of ore value Cut off unit

30×30×15 m3 2313.8 228.26 2085.43 NSR ($/ton)

9.3×109 3.8×108 8.9×109 Cu($)

25×25×12.5 m3 2.4×1010 1×1010 1.4×1010 Cu($)

20×20×10 m3 9×109 3.5×108 8.6×109 Cu($)

As can be seen in Table 6, the cost of misclassification for the block model with dimensions 
of 20×20×10 m3 has the lowest value. The use of these dimensions in grade modelling reduces 
the risk of misclassification of ore and waste, is economical, and results in lower costs in the 
extraction and processing stages.
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8. Processing destinations

Since the cost of heap leaching and flotation operations are different, forecasting and modelling 
the blocks that are transported in each processing path are effective in the economic planning 
of the mine. Therefore, based on the estimated CuO/Cu threshold for each block as an intrinsic 
feature and the correspondence between this feature and the block destination, fuzzy modelling 
was performed. For this purpose, the simulated CuO/Cu ratio of each block is classified according 
to the definitive threshold of 0.09 (cut-off) and against this real value (CuO/Cu average of blast 
holes in a block). The CCR of simulation blocks with flotation destination CuO/Cu < 0.9 and heap 
leaching CuO/Cu > 0.9 were calculated based on the threshold range. The vertex of the triangular 
fuzzy function is 0.95 and its lower and upper limits are 0.08 and 0.12 (Fig. 16). Table 7 shows the 
average grade of copper and copper oxide in each of the geometallurgical domains. Accordingly, 
the average total copper in the blocks with the heap leaching destination is less than this amount 
in blocks with the destination of flotation, and the average copper oxide in these blocks is more 
than the floating blocks.

Table 7 - Mean grade of CuO and Cu of different domains.

Destination CuO Cu
Dump 0.005 0.028

Flotation 0.056 0.668
Leaching 0.157 0.184

b

d

a

c

Fig. 16 - a) CCR for different cut-off; b) CuO/Cu cut-off membership function; c) ore and waste membership function; 
d) relation of CDF with limits of fuzzy cut-off, 30×30×15 m3.

The membership coefficient of each block to a geometallurgical domain can be determined 
based on the simulated values of that block. Figs. 17 and 18 show the spatial model of the 
membership coefficients of the classes with the destination of flotation and heap leaching. Based 
on these figures, the blocks classified with the heap-leaching destination correspond to the 
high copper oxide grade sections and also have an acceptable fit with the high concentration of 
dykes. Also, the middle of the eastern part and the south-eastern part of the model have copper 
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grade higher than 0.6 and are assumed 
to be transferred to the fl otati on circuit. 
However, due to the high grade of copper 
oxide in these areas, the processing 
desti nati on of the blocks changes to heap 
leaching. Also in levels that are close to 
the leached zone, the heap leaching class 
is more extensive. The north-eastern 
secti ons of the model correspond to 
the high concentrati on of the dykes; 
the reason for which could be the 
accumulati on of more oxide minerals at 
the site of fl uid fl ow and dyke formati on.

Fig. 17 - Spati al model of fl otati on class membership, CuO grade of 30×30×15 m3 and geological map of considered secti on.

Fig. 18 - Spati al model of heap leaching class membership, 
CuO grade of 30×30×15 m3 and geological map.
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9. Conclusions

Geometallurgy modelling by including metallurgical properties in reservoir models provides 
the possibility of realistic mine designing and optimising. The ultimate goal of geometallurgical 
modelling is to design a reservoir model in which each block includes a prediction of probable 
destination and behaviour in the processing plant, in order to decrease the decision uncertainty 
of the subsequent mining operations. Estimation and simulation of ore intrinsic features comes 
with an inevitable error, and this error is one of the reasons for the modelling uncertainty. In 
this article, the copper and copper oxide grades were simulated, and the blocks with waste 
stockpile, flotation (as ore) and heap leaching (as ore) probable destinations were classified with 
the proposed fuzzy algorithm. Through the fuzzy logic-based method, every block includes the 
fuzzy membership degree for each geometallurgical class (or block destinations). In this situation, 
decision making will be accompanied by lesser uncertainty and the risk of the next operations 
will be diminished.

The results of the method implementation on the study area have an acceptable agreement 
with the actual data of the mine, and the accuracy of the model is confirmed by them.
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