
Abstract. The behaviour of the electromagnetic (em) field response of a horizontal
electric dipole placed over the surface of a vertically inhomogeneous earth model
having linear variation of conductivity with depth is studied. The problem is solved
for a multi-layer earth model with an intermediate inhomogeneous layer, and nume-
rical results are obtained for these three-layer earth models with the intermediate tran-
sitional layer possessing the linear variation of conductivity with depth. The effect of
variation of transition layer thickness and conductivity contrast between the top and
the bottom layers are presented in the form of the absolute-amplitude ratio of the em
field components expressed as a function of numerical distance. Analysis shows the
characteristic dependence of the em field response on conductivity inhomogeneity.

1. Introduction

Study of the em response over inhomogeneous earth models has been carried out by a num-
ber of researchers. Mallick and Roy (1971) derived the analytical solutions for the em field com-
ponents of a vertical magnetic dipole placed over an inhomogeneous earth model having linear
variation of conductivity with depth, while Abramovici and Chlamtac (1978) presented the
numerical results for the em field response over such models. Further, Chlamtac and Abramovici
(1981) presented the computational results for the em field response over inhomogeneous earth
models due to a horizontal electric dipole, considering linear variation of conductivity with
depth. Singh and Lal (1995) derived the analytical and numerical solutions for the em field
response of a horizontal magnetic dipole placed over inhomogeneous earth models having expo-
nential variation of conductivity with depth.

In the present paper, the problem of calculating the em field response of a horizontal electric
dipole placed over the surface of an inhomogeneous earth model possessing linear variation of
conductivity with depth, addressed by Chlamtac and Abramovici (1981) has been generalised to
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a multi-layer earth model. The analytical and numerical solutions have been obtained for the
three-layer earth models with the intermediate layer having the linear variation of conductivity
with depth. Analytical solutions are obtained in terms of integral equations, whereas Chlamtac
and Abramovici (1981) presented them in differential equation form. In contrast to the Runge-
Kutta method of computation used by Chlamtac and Abramovici, we applied the linear digital
filtering algorithm ZHANKS proposed by Anderson (1979), which is claimed to be rapid and
accurate, for the computation of the em response. The accuracy of the algorithm compares favo-
rably with single-precision numerical quadrature methods for well-behaved infinite-integrals
containing Bessel functions of order 0 and 1.

2. Formulation and solution of the problem

The geometry of the multi-layer earth model under investigation is shown in Fig. 1. The earth
model comprises a sequence of N layers, of which (N-1) layers are homogeneous and the j-th is
inhomogeneous. The cartesian coordinate system (x, y, z) with its z-axis directed vertically
upward is used. The cylindrical coordinate system (ρ, φ, z) is also used frequently in many pla-
ces. A diagram showing the relation between these two coordinate systems is shown in the inset
of Fig. 1. A horizontal electric dipole, carrying a low-frequency alternating current and oriented
along the x-axis parallel to the surface, is placed at a height h above the model.

Let σj, μj, hj (j=1, 2, ..., N) be the conductivities, permeabilities and depths to the lower boun-
daries of the layers. The conductivity and permeability of the free space are taken to be σo and
μo respectively. Further, since the magnetic permeability value for the rock formations in gene-
ral equals the free space value, it is assumed that for all the layers μj = μo (j=1, 2, ..., N).

The conductivity σj in the j-th inhomogeneous layer, which acts as a transition zone, is assu-
med to vary in accordance with the linear variation with depth defined by the relation

where α1 is the constant dependent upon the model parameters.
Here the conductivity of the (j-1)-th layer gradually merges with that of the (j+1)-th layer

through the j-th transition layer, so that σj (z)=σj-1 at z=–hj-1, and σj (z)=σj+1 at z=–hj.
The radiation constant γ0 in the air, and γ1, γ2, ... γj-1, γj+1 ... γN in the homogeneous layers,

assume constant values, while γj (z) in the transition layer follows the linear variation with depth
in correspondence to the conductivity variation. Therefore, in terms of radiation constants, the
above relations can be expressed as

where

γ j
2 z( ) = γ j −1

2 1 + α1 z + hj −1( )[ ]
=

γ j −1
2 , at z = − hj −1

γ j +1
2 , at z = − hj

⎧
⎨
⎪

⎩⎪

  
σ σ αj j jz z h( ) = + +( )⎡

⎣
⎤
⎦− −1 1 11 , (1)

(2)



As the frequency of the current is low, the displacement currents in all the conductive media
may be neglected. The harmonic time factor eiω t is implied.

Let ds be the length of the horizontal electric dipole, and I the low frequency alternating cur-
rent flowing in the dipole. The primary Hertz vector potential (πp), which has only an x-compo-
nent, is given by

where
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Fig. 1 - Geometry of the earth model under investigation.

(3)



and

Using the Fourier-Bessel transform pair, the primary Hertz vector in the air can be expressed
as

where λ is the separation constant and 
Since the dipole is oriented along the x-axis, the primary electric field is symmetrical about

the x-z plane. While the primary potential has only an x-component, we need to employ two com-
ponents for the secondary potentials. In general, therefore, we may write

and

wher i and k are unit vectors.
The harmonic electric and magnetic vector fields E and H are related to the Hertz vector (ΠΠ)

by the relations

The components of the fields can be written directly (Ward, 1967) as
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The Hertz vector components πx and πz are the solutions of the wave equations

and

The solution of these wave eqs. (9) and (10) for the air (πo), the homogeneous layers (πj), and
the lower half-space (πN) of the model with constant radiation constants can be written directly
as

and

where

with 
The solution of the wave eqns. (9) and (10) for the transition layer has been obtained which

gives the Hertz vector potential πx and πz in the transition layer as

and

After obtaining the solution of the wave eqs. (9) and (10) for different layers, the appropria-
te boundary conditions requiring the continuity of the tangential electric and magnetic fields
were utilised to derive the field components over the surface of the proposed model. These boun-
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dary conditions in general for the interface lying between j-th and (j+1)-th layer are

The constants A(λ), Bi1
(λ), B2(λ) for all i≠j, C1(λ), C2(λ) and D(λ) are evaluated using the

boundary conditions given by eqs. (22) and (23), at different interfaces. The application of these
boundary conditions at N interfaces gives rise to a system of 2N linear equations, with the help
of which one has to find the value of 2N unknowns. Similarly, the constants Po(λ), Pi1

(λ), Pi2
(λ),

for all i≠j, Q1(λ), Q2(λ) and PN(λ) are evaluated using the boundary conditions given by eqs. (22)
through (25). The application of these boundary conditions also gives rise to another system of
2N linear equations. The solution of these systems of equations would give the values of con-
stants for a general N-layer model having assumed conductivities in different layers, whereafter
the field components over the surface of the model with the desired number of layers can be
obtained.

In the following section, the solution for the three-layer earth model with the intermediate
inhomogeneous layer, having linearly varying conductivity, acting as transition zone between the
top and bottom homogeneous layers is presented. For such a three-layer model, the components
of the electric and magnetic fields on the surface of the model under quasi-static approximations
are derived as
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with
W = i + υ

i − υ
⎛
⎝

⎞
⎠ ,

T7 = λ J1
0

∞

∫ λρ( ) dλ ,

T6 = λ2 J0
0

∞

∫ λρ( ) dλ

T5 = λ
λ + n1( )0

∞

∫ 1 + We−2n1h1

1 + λ − n1

λ + n1

⎛
⎝⎜

⎞
⎠⎟

We−2n1h1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

J0 λρ( ) dλ ,

T4 = λ
λ + n1( )0

∞

∫ 1 + We−2n1h1

1 + λ − n1

λ + n1

⎛
⎝⎜

⎞
⎠⎟

We−2n1h1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

J1 λρ( ) dλ ,

T3 = λn1

λ + n1( )0

∞

∫ 1 + We−2n1h1

1 + λ − n1

λ + n1

⎛
⎝⎜

⎞
⎠⎟

We−2n1h1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

J0 λρ( ) dλ ,

T2 = λ2

λ + n1( )0

∞

∫ 1 + We−2n1h1

1 + λ − n1

λ + n1

⎛
⎝⎜

⎞
⎠⎟

We−2n1h1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

J1 λρ( ) dλ ,

T1 = λ2

λ + n1( )0

∞

∫ 1 + We−2n1h1

1 + λ − n1

λ + n1

⎛
⎝⎜

⎞
⎠⎟

We−2n1h1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

J0 λρ( ) dλ ,

69

Boll. Geof. Teor. Appl., 38, 1-2, 63-74Horizontal electric dipole over inhomogeneous earth

(38)

(37)

(36)

(35)

(34)

(33)

(32)



and

3. Computational scheme

Chlamtac and Abramovici (1981) have presented the solutions in terms of differential equa-
tions and used the Rung-Kutta method of numerical solution for the computational results, while
in this paper the solutions for the various field components are obtained in terms of infinite-inte-
grals containing Bessel functions of order 0 and 1, and the computations are performed using a
linear digital filter algorithm.

Anderson (1979) presented a linear digital filtering algorithm, ZHANKS, for the rapid and
accurate numerical evaluation of the Hankel transforms of order 0 and 1 containing complex
Bessel functions. The algorithm is quite rapid and accurate in comparison to other known filters,
and is based on an adaptive convolution procedure. The accuracy of the algorithm compares
favorably with single-precision numerical quadrature methods for well-behaved kernels and
moderate transform arguments. Therefore, for the numerical evaluation of the em response, the
integral expressions T1, T2, T3, T4 and T5 etc., occurring in the expressions of the field compo-
nents, have been transformed into the corresponding Hankel transforms of order 0 and 1.
Thereafter, the ZHANKS algorithm is applied to compute these Hankel transforms of order 0 and
1. As per requirement of the program, the convergence of the integrals were tested, and in the
case of slow convergence or a divergent nature, they are made convergent by adding/subtracting
a known integral expression with an analytic equivalent, inside the integral sign, and subsequen-
tly adjusting its equivalent outside the integral sign. As an illustration, the integral T1 is expres-
sed as
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with

and under the limiting conditions,

In equation (39), the first part is evaluated using ZHANKS, whereas the second part is direc-
tly evaluated using the relation (Watson, 1944)

Further, for evaluating the Bessel functions in the kernels, standard expressions were used
(McLachalan, 1955).

4. Results and discussions

For studying the influence of linear variation of subsurface conductivity on em response, dif-
ferent three-layer earth models were chosen, with the assumption that the conductivity of the top
layer gradually merges into that of the basement or substratum following the linear variation in
the transition layer. The computations were performed for the absolute-amplitude ratio, the ratio
of the absolute amplitude of the field component over the model, and the corresponding compo-
nent over the homogeneous half space having the conductivity of the top layer of the model, of

λ J0 λ ρ( )
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∞

∫ dλ = 0.
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Fig. 2 - Plot of ⏐E xn
⏐/⏐ E 0

xn
⏐vs. d1, showing the effect of variation of: a) transition layer thickness; b) conductivity

contrast between the top and bottom layers.

(40)

(a) (b)



different field components, namely Ex, Hy and Ez; and the results showing the effect of variation
of transition layer thickness and conductivity contrast between the top and bottom layers are pre-
sented as a function of numerical distance d1=(ωμoσ1)

1/2ρ. Here, ρ is the separation between tran-
smitter and receiver, and all the other symbols are as defined earlier. It may be mentioned here
that the field components for the homogeneous half-space were obtained in the computational
stage by making proper substitutions.

The variation of absolute amplitude ratio of the Ex, Hy and Ez components, with numerical
distance d1, for the relative transition layer thicknesses h = (h2 - h1) / h1 = 1.0, 5.0 and 10.0, are
presented in the Figs. 2a, 3a and 4a for the model inset in the figures; and for the relative con-
ducivity contrast between the top and bottom layers, they are shown in the Figs. 2b, 3b and 4b.
A general observation of these results reveals that all the curves show their characteristic varia-
tion only for the intermediate values of numerical distance. This fact implies that the inhomoge-
neous model manifests its effect mainly in the intermediate range of numerical distance values.
The nature of the curves are similar to those obtained by Chlamtac and Abramovici (1981).

Fig. 2a, showing the variation of absolute amplitude ratio of the Ex component with d1, for
the relative thicknesses of the transition layer depicts that these curves have a value close to unity
for smaller values of d1, and then at d1 ≈ 0.1, they start decreasing exponentially to attain a lower
value for d1>10. With increase in thickness of the transition layer, the decrease in amplitude starts
at smaller values of numerical distance. The variation of the absolute amplitude ratio of the Ex

component with d1 for different conductivity contrasts, presented in Fig. 2b, shows a similar
trend as in Fig. 2a. It is noticed that as the conductivity contrasts, presented in Fig. 2b, shows a
similar trend as in Fig. 2a. It is noticed that, as the conductivity contrast decreases, the curves
start to decrease at larger values of numerical distance and shift towards the larger values of d1.
This changing pattern may be related to the changes associated with the model.

From the Fig. 3a, showing the variation of the absolute amplitude ratio of the Hy component
with d1 for the various thicknesses of transition layer, it is observed that the curves have a value
close to unity for small values of d1. At d1 ≈ 0.3, they start to increase and attain a maximum peak
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Fig. 3 - Plot of ⏐H yn
⏐/⏐ H 0

yn
⏐vs d1, showing the effect of variation of: a) transition layer thickness; b) conductivity

contrast between the top and bottom layers.

(a) (b)



at d1 ≅ 8, and then, decrease to attain a lower peak at d1 ≈ 80; they again start incrasing at d1 ≅
102 and d1 ≅ 104. Thereafter, for d1 > 104 the curves again maintain a value close to unity. As the
thickness of transition layer increases, the maximum peak decrease in amplitude and width.
From Fig. 3b, showing the effect of variation of conductivity contrast on the absolute amplitude
ratio curve of the Hy component, it is seen that with decrease in the conductivity contrast, the cur-
ves show an increase in amplitude and width. This variation in the shape of the curves may be
related to the model characteristics.

Fig. 4a showing the variation of the absolute amplitude ratio of the Ez component with d1, for
relative thicknesses of transition layer, reveals that for smaller value of d1 the curves have values
close to unity. At d1 ≈ 0.3, they start to increase and attain a maximun peak at d1 ≈ 20, and the-
reafter decrease to attain unity at (102 < d1 < 3×102). After d1 > 3×103, the curves again show an
increasing trend. As the thickness of the transition layer increases, the maximum peak of the con-
ductivity of the top layer, the Ez curves decrease in amplitude an width.

5. Conclusions

The present study deals with a simple and comprehensive approach of calculating the em
field response of a horizontal electric dipole placed over the surface of a vertically inhomoge-
neous earth model having linear variation of conductivity with depth. The problem is formulated
for a multi-layer earth model and the results are obtained for the representative three-layer earth
models with the intermediate transition layer having the linear variation of conductivity with
depth. The analytical solutions are obtained in terms of infinite integrals, and the computations
are performed by using a linear digital filter algorithm, ZHANKS, in contrast to those of tradi-
tional methods involving differential equations and numerical methods of computation. The
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Fig. 4 - Plot of ⏐E zn
⏐/⏐ E 0

zn
⏐vs. d1, showing the effect of variation of: a) transition layer thickness; b) conductivity

contrast between the top and bottom layers.

(a) (b)



algorithm is based on adaptive convolution theory and is acknowledged to be quite rapid and
accurate. The accuracy of the algorithm compares favorably with single-precision numerical
quadrature methods for well-behaved kernels and moderate transform arguments.

The computational results for the absolute amplitude ratio of the Ex, Hy and Ez components,
showing the effects of variation of relative transition layer thickness and conductivity contrast,
are plotted against numerical distance (d1). A general observation of these curves reveals that all
the curves are similar to those of Chlamtac and Abramovici (1981), and that they show their cha-
racteristic variation mainly in the intermediate range of numerical distance values. As the thick-
ness of the transition layer increases, the peaks of the Hy and Ez curves decrease in amplitude and
width. Further, it is also observed that with decreasing conductivity contrast, the curves manife-
st different variations for different components. These variations may be related to the model
characteristics.
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